`PathSensitiveBughReport` has a function to mark a symbol as interesting but
it was not possible to clear this flag. This can be useful in some cases,
so the functionality is added.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105637
When the end loc of the specified range is a split token, `makeFileCharRange`
does not process it correctly. This patch adds proper support for split tokens.
Differential Revision: https://reviews.llvm.org/D105365
This reverts commit 20176bc7dd as some
versions of GCC do not seem to handle the new code very well. They
complain about:
/tmp/ccqUQZyw.s: Assembler messages:
/tmp/ccqUQZyw.s:1151: Error: symbol `_ZNSt14_Function_base13_Base_managerIN5clangUlPKNS1_4StmtEE2_EE10_M_managerERSt9_Any_dataRKS7_St18_Manager_operation' is already defined
/tmp/ccqUQZyw.s:11963: Error: symbol `_ZNSt17_Function_handlerIFbPKN5clang4StmtEENS0_UlS3_E2_EE9_M_invokeERKSt9_Any_dataOS3_' is already defined
This seems like it is some GCC issue, but multiple buildbots (and my
local machine) are all failing because of it.
Original commit message:
[clang-repl] Implement partial translation units and error recovery.
https://reviews.llvm.org/D96033 contained a discussion regarding efficient
modeling of error recovery. @rjmccall has outlined the key ideas:
Conceptually, we can split the translation unit into a sequence of partial
translation units (PTUs). Every declaration will be associated with a unique PTU
that owns it.
The first key insight here is that the owning PTU isn't always the "active"
(most recent) PTU, and it isn't always the PTU that the declaration
"comes from". A new declaration (that isn't a redeclaration or specialization of
anything) does belong to the active PTU. A template specialization, however,
belongs to the most recent PTU of all the declarations in its signature - mostly
that means that it can be pulled into a more recent PTU by its template
arguments.
The second key insight is that processing a PTU might extend an earlier PTU.
Rolling back the later PTU shouldn't throw that extension away. For example, if
the second PTU defines a template, and the third PTU requires that template to
be instantiated at float, that template specialization is still part of the
second PTU. Similarly, if the fifth PTU uses an inline function belonging to the
fourth, that definition still belongs to the fourth. When we go to emit code in
a new PTU, we map each declaration we have to emit back to its owning PTU and
emit it in a new module for just the extensions to that PTU. We keep track of
all the modules we've emitted for a PTU so that we can unload them all if we
decide to roll it back.
Most declarations/definitions will only refer to entities from the same or
earlier PTUs. However, it is possible (primarily by defining a
previously-declared entity, but also through templates or ADL) for an entity
that belongs to one PTU to refer to something from a later PTU. We will have to
keep track of this and prevent unwinding to later PTU when we recognize it.
Fortunately, this should be very rare; and crucially, we don't have to do the
bookkeeping for this if we've only got one PTU, e.g. in normal compilation.
Otherwise, PTUs after the first just need to record enough metadata to be able
to revert any changes they've made to declarations belonging to earlier PTUs,
e.g. to redeclaration chains or template specialization lists.
It should even eventually be possible for PTUs to provide their own slab
allocators which can be thrown away as part of rolling back the PTU. We can
maintain a notion of the active allocator and allocate things like Stmt/Expr
nodes in it, temporarily changing it to the appropriate PTU whenever we go to do
something like instantiate a function template. More care will be required when
allocating declarations and types, though.
We would want the PTU to be efficiently recoverable from a Decl; I'm not sure
how best to do that. An easy option that would cover most declarations would be
to make multiple TranslationUnitDecls and parent the declarations appropriately,
but I don't think that's good enough for things like member function templates,
since an instantiation of that would still be parented by its original class.
Maybe we can work this into the DC chain somehow, like how lexical DCs are.
We add a different kind of translation unit `TU_Incremental` which is a
complete translation unit that we might nonetheless incrementally extend later.
Because it is complete (and we might want to generate code for it), we do
perform template instantiation, but because it might be extended later, we don't
warn if it declares or uses undefined internal-linkage symbols.
This patch teaches clang-repl how to recover from errors by disconnecting the
most recent PTU and update the primary PTU lookup tables. For instance:
```./clang-repl
clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all declarations
int i = 12; error;
^
error: Parsing failed.
clang-repl> int i = 13; extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=13
clang-repl> quit
```
Differential revision: https://reviews.llvm.org/D104918
This reverts commit 6775fc6ffa.
It also reverts "[lldb] Fix compilation by adjusting to the new ASTContext signature."
This reverts commit 03a3f86071.
We see some failures on the lldb infrastructure, these changes might play a role
in it. Let's revert it now and see if the bots will become green.
Ref: https://reviews.llvm.org/D104918
https://reviews.llvm.org/D96033 contained a discussion regarding efficient
modeling of error recovery. @rjmccall has outlined the key ideas:
Conceptually, we can split the translation unit into a sequence of partial
translation units (PTUs). Every declaration will be associated with a unique PTU
that owns it.
The first key insight here is that the owning PTU isn't always the "active"
(most recent) PTU, and it isn't always the PTU that the declaration
"comes from". A new declaration (that isn't a redeclaration or specialization of
anything) does belong to the active PTU. A template specialization, however,
belongs to the most recent PTU of all the declarations in its signature - mostly
that means that it can be pulled into a more recent PTU by its template
arguments.
The second key insight is that processing a PTU might extend an earlier PTU.
Rolling back the later PTU shouldn't throw that extension away. For example, if
the second PTU defines a template, and the third PTU requires that template to
be instantiated at float, that template specialization is still part of the
second PTU. Similarly, if the fifth PTU uses an inline function belonging to the
fourth, that definition still belongs to the fourth. When we go to emit code in
a new PTU, we map each declaration we have to emit back to its owning PTU and
emit it in a new module for just the extensions to that PTU. We keep track of
all the modules we've emitted for a PTU so that we can unload them all if we
decide to roll it back.
Most declarations/definitions will only refer to entities from the same or
earlier PTUs. However, it is possible (primarily by defining a
previously-declared entity, but also through templates or ADL) for an entity
that belongs to one PTU to refer to something from a later PTU. We will have to
keep track of this and prevent unwinding to later PTU when we recognize it.
Fortunately, this should be very rare; and crucially, we don't have to do the
bookkeeping for this if we've only got one PTU, e.g. in normal compilation.
Otherwise, PTUs after the first just need to record enough metadata to be able
to revert any changes they've made to declarations belonging to earlier PTUs,
e.g. to redeclaration chains or template specialization lists.
It should even eventually be possible for PTUs to provide their own slab
allocators which can be thrown away as part of rolling back the PTU. We can
maintain a notion of the active allocator and allocate things like Stmt/Expr
nodes in it, temporarily changing it to the appropriate PTU whenever we go to do
something like instantiate a function template. More care will be required when
allocating declarations and types, though.
We would want the PTU to be efficiently recoverable from a Decl; I'm not sure
how best to do that. An easy option that would cover most declarations would be
to make multiple TranslationUnitDecls and parent the declarations appropriately,
but I don't think that's good enough for things like member function templates,
since an instantiation of that would still be parented by its original class.
Maybe we can work this into the DC chain somehow, like how lexical DCs are.
We add a different kind of translation unit `TU_Incremental` which is a
complete translation unit that we might nonetheless incrementally extend later.
Because it is complete (and we might want to generate code for it), we do
perform template instantiation, but because it might be extended later, we don't
warn if it declares or uses undefined internal-linkage symbols.
This patch teaches clang-repl how to recover from errors by disconnecting the
most recent PTU and update the primary PTU lookup tables. For instance:
```./clang-repl
clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all declarations
int i = 12; error;
^
error: Parsing failed.
clang-repl> int i = 13; extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=13
clang-repl> quit
```
Differential revision: https://reviews.llvm.org/D104918
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
Allow a preprocessor observer to be notified of mark pragmas. Although
this does not impact code generation in any way, it is useful for other
clients, such as clangd, to be able to identify any marked regions.
Reviewed By: dgoldman
Differential Revision: https://reviews.llvm.org/D105368
https://bugs.llvm.org/show_bug.cgi?id=50727
When processing C# Lambda expression in the indentation can goes a little wrong,
resulting the the closing } being at the wrong indentation level and meaning the remaining part of the file is
incorrectly indented.
This can be a fairly common pattern for when C# wants to peform a UI action from a thread,
and it wants to invoke that action on the main thread
Reviewed By: exv, jbcoe
Differential Revision: https://reviews.llvm.org/D104388
Compilation database might have empty string as a command line argument.
But ExpandResponseFilesDatabase::expand doesn't expect this and assumes
that string.front() can be used for any argument. It is undefined behaviour if
string is empty. With debug build mode it causes crash in clangd.
Test Plan: check-clang
Differential Revision: https://reviews.llvm.org/D105120
This commit adds a function to the top-class of SVal hierarchy to
provide type information about the value. That can be extremely
useful when this is the only piece of information that the user is
actually caring about.
Additionally, this commit introduces a testing framework for writing
unit-tests for symbolic values.
Differential Revision: https://reviews.llvm.org/D104550
I find as I develop I'm moving between many different languages C++,C#,JavaScript all the time. As I move between the file types I like to keep `clang-format` as my formatting tool of choice. (hence why I initially added C# support in {D58404}) I know those other languages have their own tools but I have to learn them all, and I have to work out how to configure them, and they may or may not have integration into my IDE or my source code integration.
I am increasingly finding that I'm editing additional JSON files as part of my daily work and my editor and git commit hooks are just not setup to go and run [[ https://stedolan.github.io/jq/ | jq ]], So I tend to go to [[ https://jsonformatter.curiousconcept.com/ | JSON Formatter ]] and copy and paste back and forth. To get nicely formatted JSON. This is a painful process and I'd like a new one that causes me much less friction.
This has come up from time to time:
{D10543}
https://stackoverflow.com/questions/35856565/clang-format-a-json-filehttps://bugs.llvm.org/show_bug.cgi?id=18699
I would like to stop having to do that and have formatting JSON as a first class clang-format support `Language` (even if it has minimal style settings at present).
This revision adds support for formatting JSON using the inbuilt JSON serialization library of LLVM, With limited control at present only over the indentation level
This adds an additional Language into the .clang-format file to separate the settings from your other supported languages.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D93528
https://bugs.llvm.org/show_bug.cgi?id=50702
I believe {D44609} may be too aggressive with brace wrapping rules which doesn't always apply to Lamdbas
The introduction of BeforeLambdaBody and AllowShortLambdasOnASingleLine has impact on brace handling on other block types, which I suspect we didn't see before as people may not be using the BeforeLambdaBody style
From what I can tell this can be seen by the unit test I change as its not honouring the orginal LLVM brace wrapping style for the `Fct()` function
I added a unit test from PR50702 and have removed some of the code (which has zero impact on the unit test, which kind of suggests its unnecessary), some additional attempt has been made to try and ensure we'll only break on what is actually a LamdbaLBrace
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D104222
This is mostly a mechanical change, but a testcase that contains
parts of the StringRef class (clang/test/Analysis/llvm-conventions.cpp)
isn't touched.
This introduces ReferenceAlignment style option modeled around
PointerAlignment.
Style implementors can specify Left, Right, Middle or Pointer to
follow whatever the PointerAlignment option specifies.
Differential Revision: https://reviews.llvm.org/D104096
Currently the lambda body indents relative to where the lambda signature is located. This instead lets the user
choose to align the lambda body relative to the parent scope that contains the lambda declaration. Thus:
someFunction([] {
lambdaBody();
});
will always have the same indentation of the body even when the lambda signature goes on a new line:
someFunction(
[] {
lambdaBody();
});
whereas before lambdaBody would be indented 6 spaces.
Differential Revision: https://reviews.llvm.org/D102706
This reverts commit fb32de9e97.
Remove the secondary synchronization point as noted by Adrian. This is
technically only to make the builders happier about tests and should not
be needed. This also pushes the condition variable setting to after the
watch is actually established (which was the source of the original race
condition, but would normally succeed as the thread shouldn't get put to
sleep immediately on the trigger of the condition variable).
This also was pretested on the chromium builders:
https://ci.chromium.org/ui/p/chromium/builders/try/win_upload_clang/1612/overview.
This reverts commit 76f1baa787.
Also reverts 2 follow-ups:
1. Revert "DirectoryWatcher: also wait for the notifier thread"
This reverts commit 527a1821e6.
2. Revert "DirectoryWatcher: close a possible window of race on Windows"
This reverts commit a6948da86a.
Makes tests hang, see comments on https://reviews.llvm.org/D88666
Template parameters are created in ASTImporter with the translation unit as DeclContext.
The DeclContext is later updated (by the create function of template classes).
ASTImporterLookupTable was not updated after these changes of the DC. The patch
adds update of the DeclContext in ASTImporterLookupTable.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D103792
Currently, `access` doesn't recognize a dereferenced smart pointer. So,
`access(e, "field")` where `e = *x`, yields:
* `x->field`, for normal-pointer x,
* `(*x).field`, for smart-pointer x.
This patch normalizes handling of smart pointer to match normal pointer, when
the smart pointer type supports `->`.
Differential Revision: https://reviews.llvm.org/D104390
Currently, `hasUnaryOperand` fails for the overloaded `operator*`. This patch fixes the bug and
adds tests for this case.
Differential Revision: https://reviews.llvm.org/D104389
21c18d5a04
improved the detection of multiplication in function call argument lists,
but unintentionally regressed the handling of function type casts (there
were no tests covering those).
This patch improves the detection of function type casts and adds a few tests.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D104209
This reverts commit 0ec1cf13f2.
Restore the implementation with some minor tweaks:
- Use std::unique_ptr for the path instead of std::vector
* Stylistic improvement as the buffer is already heap allocated, this
just makes it clearer.
- Correct the notification buffer allocation size
* Memory usage fix: we were allocating 4x the computed size
- Correct the passing of the buffer size to RDC
* Memory usage fix: we were reporting 1/4th of the size
- Convert the operation event to auto-reset
* Bug Fix: we never reset the event
- Remove `FILE_NOTIFY_CHANGE_LAST_ACCESS` from RDC events
* Memory usage fix: we never needed this notification
- Fold events for the notification action
* Stylistic improvement to be clear how the events map
- Update comment
* Stylistic improvement to be clear what the RAII controls
- Fix the race condition that was uncovered previously
* We would return from the construction before the watcher thread
began execution. The test would then proceed to begin execution,
and we would miss the initial notifications. We now ensure that the
watcher thread is initialized before we return. This ensures that
we do not miss the initial notifications.
Running the test on a SSD was able to uncover the access pattern. This
now seems to pass reliably where it was previously flaky locally.
Given `int foo, bar;`, TraverseAST reveals this tree:
TranslationUnitDecl
- foo
- bar
Before this patch, with the TraversalScope set to {foo}, TraverseAST yields:
foo
After this patch it yields:
TranslationUnitDecl
- foo
Also, TraverseDecl(TranslationUnitDecl) now respects the traversal scope.
---
The main effect of this today is that clang-tidy checks that match the
translationUnitDecl(), either in order to traverse it or check
parentage, should work.
Differential Revision: https://reviews.llvm.org/D104071
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
The previous implementation would accidentally still sort the individual
named imports, even if the module reference was in a clang-format off
block.
Differential Revision: https://reviews.llvm.org/D104101
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This diff adds testcase for the issue fixed in https://reviews.llvm.org/D77468
but regression test was not added in the diff. On Clang 9 it caused
crash in cland during code completion.
Test Plan: check-clang-unit
Differential Revision: https://reviews.llvm.org/D103722
ParmVarDecl is created with translation unit as the parent DeclContext
and later moved to the correct DeclContext. ASTImporterLookupTable
should be updated at this move.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D103231
Template args of outer types were not fully-qualified when calling getFullyQualifiedType() for inner types.
For simplicity the patch is a copy-paste of the same call from getFullyQualifiedType().
Reviewed at: https://reviews.llvm.org/D103039
This allows to set a different indent width for preprocessor statements.
Example:
#ifdef __linux_
# define FOO
#endif
int main(void)
{
return 0;
}
Differential Revision: https://reviews.llvm.org/D103286
This re-applies the old patch D27651, which was never landed, into the
latest "main" branch, without understanding the code. I just applied
the changes "mechanically" and made it compiling again.
This makes the right pointer alignment working as expected.
Fixes https://llvm.org/PR27353
For instance
const char* const* v1;
float const* v2;
SomeVeryLongType const& v3;
was formatted as
const char *const * v1;
float const * v2;
SomeVeryLongType const &v3;
This patch keep the *s or &s aligned to the right, next to their variable.
The above example is now formatted as
const char *const *v1;
float const *v2;
SomeVeryLongType const &v3;
It is a pity that this still does not work with clang-format in 2021,
even though there was a fix available in 2016. IMHO right pointer alignment
is the default case in C, because syntactically the pointer belongs to the
variable.
See
int* a, b, c; // wrong, just the 1st variable is a pointer
vs.
int *a, *b, *c; // right
Prominent example is the Linux kernel coding style.
Some styles argue the left pointer alignment is better and declaration
lists as shown above should be avoided. That's ok, as different projects
can use different styles, but this important style should work too.
I hope that somebody that has a better understanding about the code,
can take over this patch and land it into main.
For now I must maintain this fork to make it working for our projects.
Cheers,
Gerhard.
Differential Revision: https://reviews.llvm.org/D103245
Summary:
suggestPathToFileForDiagnostics is actively used in clangd for converting
an absolute path to a header file to a header name as it should be spelled
in the sources. Current approach converts absolute path to relative path.
This diff implements missing logic that makes a reverse lookup from the
relative path to the key in the header map that should be used in the sources.
Prerequisite diff: https://reviews.llvm.org/D103229
Test Plan: check-clang
Reviewers: dexonsmith, bruno, rsmith
Subscribers: cfe-commits
Tasks:
Tags: #clang
Differential Revision: https://reviews.llvm.org/D103142
This patch adds support for matching gtest's ASSERT_THAT, EXPECT_THAT, ON_CALL and EXPECT_CALL macros.
Reviewed By: ymandel, hokein
Differential Revision: https://reviews.llvm.org/D103195
{D74265} reduced the aggressiveness of line breaking following C# attributes, however this change removed any support for attributes on properties, causing significant ugliness to be introduced.
This revision goes some way to addressing that by re-introducing the more aggressive check to `mustBreakBefore()`, but constraining it to the most common cases where we use properties which should not impact the "caller info attributes" or the "[In , Out]" decorations that are normally put on pinvoke
It does not address my additional concerns of the original change regarding multiple C# attributes, as these are somewhat incorrectly handled by virtue of the fact its not recognising the second attribute as an attribute at all. But instead thinking its an array.
The purpose of this revision is to get back to where we were for the most common of cases as a stepping stone to resolving this. However {D74265} has broken a lot of C# code and this revision will go someway alone to addressing the majority.
Reviewed By: jbcoe, HazardyKnusperkeks, curdeius
Differential Revision: https://reviews.llvm.org/D103307
This inheritance list style has been widely adopted by Symantec,
a division of Broadcom Inc. It breaks after the commas that
separate the base-specifiers:
class Derived : public Base1,
private Base2
{
};
Differential Revision: https://reviews.llvm.org/D103204