ObjectFile::SetLoadAddress (Target &target,
lldb::addr_t value,
bool value_is_offset);
Now "value" is a slide if "value_is_offset" is true, and "value" is an image base address otherwise. All previous usage of this API was using slides.
Updated the ObjectFileELF and ObjectFileMachO SetLoadAddress methods to do the right thing.
Also updated the ObjectFileMachO::SetLoadAddress() function to not load __LINKEDIT when it isn't needed and to only load sections that belong to the executable object file.
llvm-svn: 201003
SBType SBType::GetTypedefedType();
Also added the ability to get a type by type ID from a SBModule:
SBType SBModule::GetTypeByID (lldb::user_id_t uid);
llvm-svn: 199939
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
There are two new classes:
lldb::SBModuleSpec
lldb::SBModuleSpecList
The SBModuleSpec wraps up a lldb_private::ModuleSpec, and SBModuleSpecList wraps up a lldb_private::ModuleSpecList.
llvm-svn: 185877
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
SBValueList was backed by a ValueObjectList. This caused us to lose track of the additional metadata in the ValueImpl that backs SBValue.
This checkin fixes that by backing SBValueList with ValueListImpl (that essentially wraps a vector<SBValue>).
llvm-svn: 174638
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Adding FindFirstGlobalVariable to SBModule and SBTarget
These calls work like FindGlobalVariables but they only return the first match found and so they can return an SBValue instead of an SBValueList for added convenience of use
llvm-svn: 172636
Add the ability to get a symbol or symbols by name and type from a SBModule, and also the ability to get all symbols by name and type from SBTarget objects.
llvm-svn: 169205
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
GetSupportFileAtIndex(), GetNumSupportFiles(), FindSupportFileIndex():
Add API support for getting the list of files in a compilation unit.
GetNumCompileUnits(), GetCompileUnitAtIndex():
Add API support for retrieving the compilation units in a module.
llvm-svn: 152942
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
subclasses if the object files support version numbering. Exposed
this through SBModule for upcoming data formatter version checking stuff.
llvm-svn: 151190
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
indicate whether inline functions are desired.
This allows the expression parser, for instance,
to filter out inlined functions when looking for
functions it can call.
llvm-svn: 150279
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
contain shared pointers to the lldb_private::Target and lldb_private::Process
objects respectively as we won't want the target or process just going away.
Also cleaned up the lldb::SBModule to remove dangerous pointer accessors.
For any code the public API files, we should always be grabbing shared
pointers to any objects for the current class, and any other classes prior
to running code with them.
llvm-svn: 149238
frames might go away (the object itself, not the actual logical frame) when
we are single stepping due to the way we currently sometimes end up flushing
frames when stepping in/out/over. They later will come back to life
represented by another object yet they have the same StackID. Now when you get
a lldb::SBFrame object, it will track the frame it is initialized with until
the thread goes away or the StackID no longer exists in the stack for the
thread it was created on. It uses a weak_ptr to both the frame and thread and
also stores the StackID. These three items allow us to determine when the
stack frame object has gone away (the weak_ptr will be NULL) and allows us to
find the correct frame again. In our test suite we had such cases where we
were just getting lucky when something like this happened:
1 - stop at breakpoint
2 - get first frame in thread where we stopped
3 - run an expression that causes the program to JIT and run code
4 - run more expressions on the frame from step 2 which was very very luckily
still around inside a shared pointer, yet, not part of the current
thread (a new stack frame object had appeared with the same stack ID and
depth).
We now avoid all such issues and properly keep up to date, or we start
returning errors when the frame doesn't exist and always responds with
invalid answers.
Also fixed the UserSettingsController (not going to rewrite this just yet)
so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to
track when the master controller has already gone away and this allowed me to
pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer
needed.
llvm-svn: 149231
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBModule and SBSection APIs.
llvm-svn: 146899
Fixed an issues with the SBType and SBTypeMember classes:
- Fixed SBType to be able to dump itself from python
- Fixed SBType::GetNumberOfFields() to return the correct value for objective C interfaces
- Fixed SBTypeMember to be able to dump itself from python
- Fixed the SBTypeMember ability to get a field offset in bytes (the value
being returned was wrong)
- Added the SBTypeMember ability to get a field offset in bits
Cleaned up a lot of the Stream usage in the SB API files.
llvm-svn: 144493
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
ability to dump more information about modules in "target modules list". We
can now dump the shared pointer reference count for modules, the pointer to
the module itself (in case performance tools can help track down who has
references to said pointer), and the modification time.
Added "target delete [target-idx ...]" to be able to delete targets when they
are no longer needed. This will help track down memory usage issues and help
to resolve when module ref counts keep getting incremented. If the command gets
no arguments, the currently selected target will be deleted. If any arguments
are given, they must all be valid target indexes (use the "target list"
command to get the current target indexes).
Took care of a bunch of "no newline at end of file" warnings.
TimeValue objects can now dump their time to a lldb_private::Stream object.
Modified the "target modules list --global" command to not error out if there
are no targets since it doesn't require a target.
Fixed an issue in the MacOSX DYLD dynamic loader plug-in where if a shared
library was updated on disk, we would keep using the older one, even if it was
updated.
Don't allow the ModuleList::GetSharedModule(...) to return an empty module.
Previously we could specify a valid path on disc to a module, and specify an
architecture that wasn't contained in that module and get a shared pointer to
a module that wouldn't be able to return an object file or a symbol file. We
now make sure an object file can be extracted prior to adding the shared pointer
to the module to get added to the shared list.
llvm-svn: 137196
the SBType implementation classes.
Fixed LLDB core and the test suite to not use deprecated SBValue APIs.
Added a few new APIs to SBValue:
int64_t
SBValue::GetValueAsSigned(int64_t fail_value=0);
uint64_t
SBValue::GetValueAsUnsigned(uint64_t fail_value=0)
llvm-svn: 136829
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
API.
SBTarget changes include changing:
bool
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr,
lldb::SBAddress& addr);
to be:
lldb::SBAddress
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr);
SBAddress can how contruct itself using a load address and a target
which can be used to resolve the address:
SBAddress (lldb::addr_t load_addr, lldb::SBTarget &target);
This will actually just call the new SetLoadAddress accessor:
void
SetLoadAddress (lldb::addr_t load_addr,
lldb::SBTarget &target);
This function will always succeed in making a SBAddress object
that can be used in API calls (even if "target" isn't valid).
If "target" is valid and there are sections currently loaded,
then it will resolve the address to a section offset address if
it can. Else an address with a NULL section and an offset that is
the "load_addr" that was passed in. We do this because a load address
might be from the heap or stack.
llvm-svn: 135770
level in the public API.
Also modified the ValueObject values to be able to display global variables
without having a valid running process. The globals will read themselves from
the object file section data if there is no process, and from the process if
there is one.
Also fixed an issue where modifications for dynamic types could cause child
values of ValueObjects to not show up if the value was unable to evaluate
itself (children of NULL pointer objects).
llvm-svn: 134102
interface.
Added a quick way to set the platform though the SBDebugger interface. I will
actually an a SBPlatform support soon, but for now this will do.
ConnectionFileDescriptor can be passed a url formatted as: "fd://<fd>" where
<fd> is a file descriptor in the current process. This is handy if you have
services, deamons, or other tools that can spawn processes and give you a
file handle.
llvm-svn: 130565
lldb::SymbolType SBSymbol::GetType();
lldb::SectionType SBAddress::GetSectionType ();
lldb::SBModule SBAddress::GetModule ();
Also add an lldb::SBModule::GetUUIDString() API which is easier for Python
to work with in the test script.
llvm-svn: 128695
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319
- Try to reduce logging to one line per function call instead of tw
- Put all arguments & their values into log for calls
- Add 'this' parameter information to function call logging, making it show the appropriate
internal pointer (this.obj, this.sp, this.ap...)
- Clean up some return values
- Remove logging of constructors that construct empty objects
- Change '==>' to '=>' for showing result values...
- Fix various minor bugs
- Add some protected 'get' functions to help getting the internal pointers for the 'this' arguments...
llvm-svn: 117417