Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
Resolve lit failures in clang after 8ca4b3e's land
Fix lit test failures in clang-ppc* and clang-x64-windows-msvc
Fix missing failures in clang-ppc64be* and retry fixing clang-x64-windows-msvc
Fix internal_clone(aarch64) inline assembly
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
For a definition (of most linkage types), dso_local is set for ELF -fno-pic/-fpie
and COFF, but not for Mach-O. This nuance causes unneeded binary format differences.
This patch replaces (function) `define ` with `define{{.*}} `,
(variable/constant/alias) `= ` with `={{.*}} `, or inserts appropriate `{{.*}} `
if there is an explicit linkage.
* Clang will set dso_local for Mach-O, which is currently implied by TargetMachine.cpp. This will make COFF/Mach-O and executable ELF similar.
* Eventually I hope we can make dso_local the textual LLVM IR default (write explicit "dso_preemptable" when applicable) and -fpic ELF will be similar to everything else. This patch helps move toward that goal.
with notail on x86-64.
On x86-64, the epilogue code inserted before the tail jump blocks the
autoreleased return optimization.
rdar://problem/38675807
Differential Revision: https://reviews.llvm.org/D59656
llvm-svn: 356705
Calls to this function are deleted in the ARC optimizer. However when the ARC
optimizer was updated to use intrinsics instead of functions (r349534), the corresponding
clang change (r349535) to use intrinsics missed this one so it wasn't being deleted.
llvm-svn: 349782
Much to my surprise, '-disable-llvm-optzns' which I thought was the
magical flag I wanted to get at the raw LLVM IR coming out of Clang
deosn't do that. It still runs some passes over the IR. I don't want
that, I really want the *raw* IR coming out of Clang and I strongly
suspect everyone else using it is in the same camp.
There is actually a flag that does what I want that I didn't know about
called '-disable-llvm-passes'. I suspect many others don't know about it
either. It both does what I want and is much simpler.
This removes the confusing version and makes that spelling of the flag
an alias for '-disable-llvm-passes'. I've also moved everything in Clang
to use the 'passes' spelling as it seems both more accurate (*all* LLVM
passes are disabled, not just optimizations) and much easier to remember
and spell correctly.
This is part of simplifying how Clang drives LLVM to make it cleaner to
wire up to the new pass manager.
Differential Revision: https://reviews.llvm.org/D28047
llvm-svn: 290392
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
This reverts commit r234700. It turns out that the lifetime markers
were not the cause of Chromium failing but a bug which was uncovered by
optimizations exposed by the markers.
llvm-svn: 235553
Now that TailRecursionElimination has been fixed with r222354, the
threshold on size for lifetime marker insertion can be removed. This
only affects named temporary though, as the patch for unnamed temporaries
is still in progress.
My previous commit (r222993) was not handling debuginfo correctly, but
this could only be seen with some asan tests. Basically, lifetime markers
are just instrumentation for the compiler's usage and should not affect
debug information; however, the cleanup infrastructure was assuming it
contained only destructors, i.e. actual code to be executed, and was
setting the breakpoint for the end of the function to the closing '}', and
not the return statement, in order to show some destructors have been
called when leaving the function. This is wrong when the cleanups are only
lifetime markers, and this is now fixed.
llvm-svn: 234581
Now that TailRecursionElimination has been fixed with r222354, the
threshold on size for lifetime marker insertion can be removed. This
only affects named temporary though, as the patch for unnamed temporaries
is still in progress.
llvm-svn: 222993
Boostrapping LLVM+Clang+LLDB without threshold on object size for
lifetime markers insertion has shown there was no significant change
in compile time, so let the stack slot colorizer do its optimization
for all slots.
llvm-svn: 219303
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137