As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
For chains of triangles with small join blocks that can be tail duplicated, a
simple calculation of probabilities is insufficient. Tail duplication
can be profitable in 3 different ways for these cases:
1) The post-dominators marked 50% are actually taken 56% (This shrinks with
longer chains)
2) The chains are statically correlated. Branch probabilities have a very
U-shaped distribution.
[http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
If the branches in a chain are likely to be from the same side of the
distribution as their predecessor, but are independent at runtime, this
transformation is profitable. (Because the cost of being wrong is a small
fixed cost, unlike the standard triangle layout where the cost of being
wrong scales with the # of triangles.)
3) The chains are dynamically correlated. If the probability that a previous
branch was taken positively influences whether the next branch will be
taken
We believe that 2 and 3 are common enough to justify the small margin in 1.
The code pre-scans a function's CFG to identify this pattern and marks the edges
so that the standard layout algorithm can use the computed results.
llvm-svn: 296845
This re-applies r268760, reverted in r268794.
Fixes http://llvm.org/PR27670
The original imp-defs assertion was way overzealous: forward all
implicit operands, except imp-defs of the new super-reg def (r268787
for GR64, but also possible for GR16->GR32), or imp-uses of the new
super-reg use.
While there, mark the source use as Undef, and add an imp-use of the
old source reg: that should cover any case of dead super-regs.
At the stage the pass runs, flags are unlikely to matter anyway;
still, let's be as correct as possible.
Also add MIR tests for the various interesting cases.
Original commit message:
Codesize is less (16) or equal (8), and we avoid partial
dependencies.
Differential Revision: http://reviews.llvm.org/D19999
llvm-svn: 268831
There's a special case in EmitLoweredSelect() that produces an improved
lowering for cmov(cmov) patterns. However this special lowering is
currently broken if the inner cmov has multiple users so this patch
stops using it in this case.
If you wonder why this wasn't fixed by continuing to use the special
lowering and inserting a 2nd PHI for the inner cmov: I believe this
would incur additional copies/register pressure so the special lowering
does not improve upon the normal one anymore in this case.
This fixes http://llvm.org/PR26256 (= rdar://24329747)
llvm-svn: 258729
This reverts commit r237210.
Also fix X86/complex-fca.ll to match the code that we used to generate
on win32 and now generate everwhere to conform to SysV.
llvm-svn: 237639
Summary:
This rule was always in the old SysV i386 ABI docs and the new ones that
H.J. Lu has put together, but we never noticed:
EAX scratch register; also used to return integer and pointer values
from functions; also stores the address of a returned struct or union
Fixes PR23491.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9715
llvm-svn: 237175
This lets us avoid a few copies that are otherwise hard to get rid of.
The way this is done is, the custom-inserter looks at the following
instruction for another CMOV, and replaces both at the same time.
A previous version used a new CMOV2 opcode, but the custom inserter
is expected to be able to return a different basic block anyway, which
means it's OK - though far from ideal - to alter that block's contents.
Explicitly document that, in case it ever makes a difference.
Alternatives welcome!
Follow-up to r231045.
rdar://19767934
Closes http://reviews.llvm.org/D8019
llvm-svn: 231046
Fold and/or of setcc's to double CMOV:
(CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
(CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
When we can't use the CMOV instruction, it might increase branch
mispredicts. When we can, or when there is no mispredict, this
improves throughput and reduces register pressure.
These can't be catched by generic combines, because the pattern can
appear when legalizing some instructions (such as fcmp une).
rdar://19767934
http://reviews.llvm.org/D7634
llvm-svn: 231045