Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
llvm-svn: 231136
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
llvm-svn: 231135
Previously we had only Linux using DTPOFF for these; all X86 ELF
targets should. Fixes a side issue mentioned in PR21077.
Differential Revision: http://reviews.llvm.org/D8011
llvm-svn: 231130
This lets us avoid a few copies that are otherwise hard to get rid of.
The way this is done is, the custom-inserter looks at the following
instruction for another CMOV, and replaces both at the same time.
A previous version used a new CMOV2 opcode, but the custom inserter
is expected to be able to return a different basic block anyway, which
means it's OK - though far from ideal - to alter that block's contents.
Explicitly document that, in case it ever makes a difference.
Alternatives welcome!
Follow-up to r231045.
rdar://19767934
Closes http://reviews.llvm.org/D8019
llvm-svn: 231046
Fold and/or of setcc's to double CMOV:
(CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
(CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
When we can't use the CMOV instruction, it might increase branch
mispredicts. When we can, or when there is no mispredict, this
improves throughput and reduces register pressure.
These can't be catched by generic combines, because the pattern can
appear when legalizing some instructions (such as fcmp une).
rdar://19767934
http://reviews.llvm.org/D7634
llvm-svn: 231045
Summary:
When the RHS of a conditional move node is zero, we can utilize the $zero
register by inverting the conditional move instruction and by swapping the
order of its True/False operands.
Reviewers: dsanders
Differential Revision: http://reviews.llvm.org/D7945
llvm-svn: 230956
With initializer lists there is a really neat idiomatic way to write
this, 'ArrayRef.equals({1, 2, 3, 4, 5})'. Remove the equal method which
always had a hard limit on the number of arguments. I considered
rewriting it with variadic templates but that's not really a good fit
for a function with homogeneous arguments.
'ArrayRef == {1, 2, 3, 4, 5}' would've been even more awesome, but C++11
doesn't allow init lists with binary operators.
llvm-svn: 230907
All of the cases were just appending from random access iterators to a
vector. Using insert/append can grow the vector to the perfect size
directly and moves the growing out of the loop. No intended functionalty
change.
llvm-svn: 230845
Straightforward patch to emit an alignment directive when emitting a
TOC entry. The test case was generated from the test in PR22711 that
demonstrated a misaligned .toc section. The object code is run
through llvm-readobj to verify that the correct alignment has been
applied to the .toc section.
Thanks to Ulrich Weigand for running down where the fix was needed.
llvm-svn: 230801
Summary:
Until now, we did this (among other things) based on whether or not the
target was Windows. This is clearly wrong, not just for Win64 ABI functions
on non-Windows, but for System V ABI functions on Windows, too. In this
change, we make this decision based on the ABI the calling convention
specifies instead.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7953
llvm-svn: 230793
When using Altivec, we can use vector loads and stores for aligned memcpy and
friends. Starting with the P7 and VXS, we have reasonable unaligned vector
stores. Starting with the P8, we have fast unaligned loads too.
For QPX, we use vector loads are stores, but only for aligned memory accesses.
llvm-svn: 230788
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
llvm-svn: 230753
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
llvm-svn: 230751
Summary:
We identify the cases where the operand to an ADDE node is a constant
zero. In such cases, we can avoid generating an extra ADDu instruction
disguised as an identity move alias (ie. addu $r, $r, 0 --> move $r, $r).
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7906
llvm-svn: 230742
Summary:
This change causes us to actually save non-volatile registers in a Win64
ABI function that calls a System V ABI function, and vice-versa.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7919
llvm-svn: 230714
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
llvm-svn: 230710
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
llvm-svn: 230695
dynamic blends.
This makes it much more clear what is going on. The case we're handling
is that of dynamic conditions, and we're bailing when the nature of the
vector types and subtarget preclude lowering the dynamic condition
vselect as an actual blend.
No functionality changed here, but this will make a subsequent bug-fix
to this code much more clear.
llvm-svn: 230690
There was a problem when passing structures as variable arguments.
The structures smaller than 64 bit were not left justified on MIPS64
big endian. This is now fixed by shifting the value to make it left-
justified when appropriate.
This fixes the bug http://llvm.org/bugs/show_bug.cgi?id=21608
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D7881
llvm-svn: 230657
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
llvm-svn: 230651
This patch is in response to r223147 where the avaiable features are
computed based on ".cpu" directive. This will work clean for the standard
variants like cortex-a9. For custom variants which rely on standard cpu names
for assembly, the additional features of a CPU should be propagated. This can be
done via ".arch_extension" as long as the assembler supports it. The
implementation for krait along with unit test will be submitted in next patch.
llvm-svn: 230650
The latency for the WriteMULm class was set to 4, which is actually lower than the latency for WriteMULr (5).
A better estimate would be 4 added to WriteMULr, that is, 9.
llvm-svn: 230634
formulaic into the top v8i16 lowering routine.
This makes the generalized lowering a completely general and single path
lowering which will allow generalizing it in turn for multiple 128-bit
lanes.
llvm-svn: 230623
Explanation: This function is in TargetLowering because it uses
RegClassForVT which would need to be moved to TargetRegisterInfo
and would necessitate moving isTypeLegal over as well - a massive
change that would just require TargetLowering having a TargetRegisterInfo
class member that it would use.
llvm-svn: 230585
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
llvm-svn: 230553
The Win64 epilogue structure is very restrictive, it permits a very
small number of opcodes and none of them are 'mov'.
This means that given:
mov %rbp, %rsp
pop %rbp
The mov isn't the epilogue, only the pop is. This is problematic unless
a frame pointer is present in which case we are free to do whatever we'd
like in the "body" of the function. If a frame pointer is present,
unwinding will undo the prologue operations in reverse order regardless
of the fact that we are at an instruction which is reseting the stack
pointer.
llvm-svn: 230543
We had somehow accumulated a few target-specific SDAG nodes dealing with PPC64
TOC access that were referenced only in TableGen patterns. The associated
(pseudo-)instructions are used, but are being generated directly. NFC.
llvm-svn: 230518
Reapply r230248.
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230499
MMX_MOVD64rm zero-extends i32 load results into i64 registers.
The peephole optimizer will try to fold it in other MMX foldable
instructions, the wrong thing to do, since there's no MMX memory
instruction that loads from i32 and does implict zero extension.
Remove 'canFoldAsLoad' from MOVD64rm in order to prevent such folding.
The current MMX tests already test this, but since there are no MMX
instructions in the foldable tables yet, this did not trigger. This
commit prepares the addition of those instructions.
llvm-svn: 230498
Thumb-1 only allows SP-based LDR and STR to be word-sized, and SP-base LDR,
STR, and ADD only allow offsets that are a multiple of 4. Make some changes
to better make use of these instructions:
* Use word loads for anyext byte and halfword loads from the stack.
* Enforce 4-byte alignment on objects accessed in this way, to ensure that
the offset is valid.
* Do the same for objects whose frame index is used, in order to avoid having
to use more than one ADD to generate the frame index.
* Correct how many bits of offset we think AddrModeT1_s has.
Patch by John Brawn.
llvm-svn: 230496
Gather and scatter instructions additionally write to one of the source operands - mask register.
In this case Gather has 2 destination values - the loaded value and the mask.
Till now we did not support code gen pattern for gather - the instruction was generated from
intrinsic only and machine node was hardcoded.
When we introduce the masked_gather node, we need to select instruction automatically,
in the standard way.
I added a flag "hasTwoExplicitDefs" that allows to handle 2 destination operands.
(Some code in the X86InstrFragmentsSIMD.td is commented out, just to split one big
patch in many small patches)
llvm-svn: 230471
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
llvm-svn: 230413
The reason why these large shift sizes happen is because OpaqueConstants
currently inhibit alot of DAG combining, but that has to be addressed in
another commit (like the proposal in D6946).
Differential Revision: http://reviews.llvm.org/D6940
llvm-svn: 230355
The logic is almost there already, with our special homogeneous aggregate
handling. Tweaking it like this allows front-ends to emit AAPCS compliant code
without ever having to count registers or add discarded padding arguments.
Only arrays of i32 and i64 are needed to model AAPCS rules, but I decided to
apply the logic to all integer arrays for more consistency.
llvm-svn: 230348
Summary: Separated some instruction and pseudo-instruction definitions from InstAlias definitions, added banner for pseudo-instructions and removed a redundant whitespace from a pseudo-instruction definition. No functional change.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7552
llvm-svn: 230327
Summary: Begin to add various address modes; including alloca.
Test Plan: Make sure there are no regressions in test-suite at O0/02 in mips32r1/r2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: echristo, rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6426
llvm-svn: 230300
This is a follow up to r230233 to fix something that I noticed by
inspection. The AddrModeT2_i8s4 addressing mode does not support
negative offsets. I spent a good chunk of the day trying to come up with
a testcase for this but was not successful. This addressing mode is used
to spill and restore GPRPair registers in Thumb2 code and that does not
happen often. We also make very limited used of negative offsets when
lowering frame indexes. I am going ahead with the change anyway, because
I am pretty confident that it is correct. I also added a missing assertion
to check that the low bits of the scaled offset are zero.
llvm-svn: 230297
Prologue emission, in some cases, requires calls to a stack probe helper
function. The amount of stack to probe is passed as a register
argument in the Win64 ABI but the instruction sequence used is
pessimistic: it assumes that the number of bytes to probe is greater
than 4 GB.
Instead, select a more appropriate opcode depending on the number of
bytes we are going to probe.
llvm-svn: 230270
Front-ends could use global unnamed_addr to hold pointers to other
symbols, like @gotequivalent below:
@foo = global i32 42
@gotequivalent = private unnamed_addr constant i32* @foo
@delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64),
i64 ptrtoint (i32* @delta to i64))
to i32)
The global @delta holds a data "PC"-relative offset to @gotequivalent,
an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows:
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
Since unnamed_addr indicates that the address is not significant, only
the content, we can optimize the case above by replacing pc-relative
accesses to "GOT equivalent" globals, by a PC relative access to the GOT
entry of the final symbol instead. Therefore, "delta" can contain a pc
relative relocation to foo's GOT entry and we avoid the emission of
"gotequivalent", yielding the assembly code below:
.globl _foo
_foo:
.long 42
.globl _delta
_delta:
.long _foo@GOTPCREL+4
There are a couple of advantages of doing this: (1) Front-ends that need
to emit a great deal of data to store pointers to external symbols could
save space by not emitting such "got equivalent" globals and (2) IR
constructs combined with this opt opens a way to represent GOT pcrel
relocations by using the LLVM IR, which is something we previously had
no way to express.
Differential Revision: http://reviews.llvm.org/D6922
rdar://problem/18534217
llvm-svn: 230264
It was previously using the subtarget to get values for the global
offset without actually checking each function as it was generating
code. Go ahead and solidify the current behavior and make the
existing FIXMEs more prominent.
As a note the ARM backend previously had a thumb1 and non-thumb1
set of defaults. Only the former was tested so I've changed the
behavior to only use that for now.
llvm-svn: 230245
This patch adds the isProfitableToHoist API. For AArch64, we want to prevent a
fmul from being hoisted in cases where it is more profitable to form a
fmsub/fmadd.
Phabricator Review: http://reviews.llvm.org/D7299
Patch by Lawrence Hu <lawrence@codeaurora.org>
llvm-svn: 230241
Summary:
-mno-odd-spreg prohibits the use of odd-numbered single-precision floating
point registers. However, vector insert/extract was still using them when
manipulating the subregisters of an MSA register. Fixed this by ensuring
that insertion/extraction is only performed on even-numbered vector
registers when -mno-odd-spreg is given.
Reviewers: vmedic, sstankovic
Reviewed By: sstankovic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7672
llvm-svn: 230235
The natural way to handle this addressing mode would be to say that it has
8 bits and gets scaled by 4, but since the MC layer is expecting the scaling
to be already reflected in the immediate value, we have been setting the
Scale to 1. That's fine, but then NumBits needs to be adjusted to reflect
the effective increase in the range of the immediate. That adjustment was
missing.
The consequence is that the register scavenger can fail.
The estimateRSStackSizeLimit() function in ARMFrameLowering.cpp correctly
assumes that the AddrModeT2_i8s4 address mode can handle scaled offsets up to
1020. Under just the right circumstances, we fail to reserve space for the
scavenger because it thinks that nothing will be needed. However, the overly
pessimistic behavior in rewriteT2FrameIndex causes some frame indexes to be
out of range and require scavenged registers, and so the scavenger asserts.
Unfortunately I have not been able to come up with a testcase for this. I
can only reproduce it on an internal branch where the frame layout and
register allocation is slightly different than trunk. We really need a
way to serialize MachineInstr-level IR to write reasonable tests for things
like this.
rdar://problem/19909005
llvm-svn: 230233
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230226
I made the templates general, no need to define pattern separately for each instruction/intrinsic.
Now only need to add r_Int pattern for AVX.
llvm-svn: 230221
Synthesizing a call directly using the MI layer would confuse the frame
lowering code. This is problematic as frame lowering is highly
sensitive the particularities of calls, etc.
llvm-svn: 230129
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.
There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.
llvm-svn: 230118
Stack realignment occurs after the prolog, not during, for Win64.
Because of this, don't factor in the maximum stack alignment when
establishing a frame pointer.
This fixes PR22572.
llvm-svn: 230113
The expansion code does the same thing. Since
the operands were not defined with the correct
types, this has the side effect of fixing operand
folding since the expanded pseudo would never use
SGPRs or inline immediates.
llvm-svn: 230072
This enables a few useful combines that used to only
use fma.
Also since v_mad_f32 apparently does not support denormals,
disable the existing cases that are custom handled if they are
requested.
llvm-svn: 230071
usage of instruction ADDU16 by CodeGen. For this instruction an improper
register is allocated, i.e. the register that is not from register set defined
for the instruction.
llvm-svn: 230053
changes to remove non-Function based subtargets out of the asm
printer. For module level emission we'll need to construct up
an MCSubtargetInfo so that we can encode instructions for
emission.
llvm-svn: 230050
This patch teaches X86FastISel how to select intrinsic 'convert_from_fp16' and
intrinsic 'convert_to_fp16'.
If the target has F16C, we can select VCVTPS2PHrr for a float-half conversion,
and VCVTPH2PSrr for a half-float conversion.
Differential Revision: http://reviews.llvm.org/D7673
llvm-svn: 230043
EmitFunctionStubs is called from doFinalization and so can't
depend on the Subtarget existing. It's also irrelevant as
we know we're darwin since we're in the darwin asm printer.
llvm-svn: 230039
This canonicalization step saves us 3 pattern matching possibilities * 4 math ops
for scalar FP math that uses xmm regs. The backend can re-commute the operands
post-instruction-selection if that makes register allocation better.
The tests in llvm/test/CodeGen/X86/sse-scalar-fp-arith.ll cover this scenario already,
so there are no new tests with this patch.
Differential Revision: http://reviews.llvm.org/D7777
llvm-svn: 230024
the wrong answer. We also got initializer lists which are *way* cleaner
for this kind of thing. Let's use those and make this a normal, boring
functionn accepting ArrayRef.
llvm-svn: 230004
The IBM BG/Q supercomputer's A2 cores have a hardware prefetching unit, the
L1P, but it does not prefetch directly into the A2's L1 cache. Instead, it
prefetches into its own L1P buffer, and the latency to access that buffer is
significantly higher than that to the L1 cache (although smaller than the
latency to the L2 cache). As a result, especially when multiple hardware
threads are not actively busy, explicitly prefetching data into the L1 cache is
advantageous.
I've been using this pass out-of-tree for data prefetching on the BG/Q for well
over a year, and it has worked quite well. It is enabled by default only for
the BG/Q, but can be enabled for other cores as well via a command-line option.
Eventually, we might want to add some TTI interfaces and move this into
Transforms/Scalar (there is nothing particularly target dependent about it,
although only machines like the BG/Q will benefit from its simplistic
strategy).
llvm-svn: 229966
The new shuffle lowering has been the default for some time. I've
enabled the new legality testing by default with no really blocking
regressions. I've fuzz tested this very heavily (many millions of fuzz
test cases have passed at this point). And this cleans up a ton of code.
=]
Thanks again to the many folks that helped with this transition. There
was a lot of work by others that went into the new shuffle lowering to
make it really excellent.
In case you aren't using a diff algorithm that can handle this:
X86ISelLowering.cpp: 22 insertions(+), 2940 deletions(-)
llvm-svn: 229964
is going well, remove the flag and the code for the old legality tests.
This is the first step toward removing the entire old vector shuffle
lowering. *Much* more code to delete coming up next.
llvm-svn: 229963
reflects the fact that the x86 backend can in fact lower any shuffle you
want it to with reasonably high code quality.
My recent work on the new vector shuffle has made this regress *very*
little. The diff in the test cases makes me very, very happy.
llvm-svn: 229958
This re-applies r223862, r224198, r224203, and r224754, which were
reverted in r228129 because they exposed Clang misalignment problems
when self-hosting.
The combine caused the crashes because we turned ISD::LOAD/STORE nodes
to ARMISD::VLD1/VST1_UPD nodes. When selecting addressing modes, we
were very lax for the former, and only emitted the alignment operand
(as in "[r1:128]") when it was larger than the standard alignment of
the memory type.
However, for ARMISD nodes, we just used the MMO alignment, no matter
what. In our case, we turned ISD nodes to ARMISD nodes, and this
caused the alignment operands to start being emitted.
And that's how we exposed alignment problems that were ignored before
(but I believe would have been caught with SCTRL.A==1?).
To fix this, we can just mirror the hack done for ISD nodes: only
take into account the MMO alignment when the access is overaligned.
Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
rdar://19717869, rdar://14062261.
llvm-svn: 229932
In preparation for a future patch:
- rename isLoad to isLoadOp: the former is confusing, and can be taken
to refer to the fact that the node is an ISD::LOAD. (it isn't, yet.)
- change formatting here and there.
- add some comments.
- const-ify bools.
llvm-svn: 229929
systematic lowering of v8i16.
This required a slight strategy shift to prefer unpack lowerings in more
places. While this isn't a cut-and-dry win in every case, it is in the
overwhelming majority. There are only a few places where the old
lowering would probably be a touch faster, and then only by a small
margin.
In some cases, this is yet another significant improvement.
llvm-svn: 229859
addition to lowering to trees rooted in an unpack.
This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.
llvm-svn: 229856
terribly complex partial blend logic.
This code path was one of the more complex and bug prone when it first
went in and it hasn't faired much better. Ultimately, with the simpler
basis for unpack lowering and support bit-math blending, this is
completely obsolete. In the worst case without this we generate
different but equivalent instructions. However, in many cases we
generate much better code. This is especially true when blends or pshufb
is available.
This does expose one (minor) weakness of the unpack lowering that I'll
try to address.
In case you were wondering, this is actually a big part of what I've
been trying to pull off in the recent string of commits.
llvm-svn: 229853
needed, and significantly improve the SSSE3 path.
This makes the new strategy much more clear. If we can blend, we just go
with that. If we can't blend, we try to permute into an unpack so
that we handle cases where the unpack doing the blend also simplifies
the shuffle. If that fails and we've got SSSE3, we now call into
factored-out pshufb lowering code so that we leverage the fact that
pshufb can set up a blend for us while shuffling. This generates great
code, especially because we *know* we don't have a fast blend at this
point. Finally, we fall back on decomposing into permutes and blends
because we do at least have a bit-math-based blend if we need to use
that.
This pretty significantly improves some of the v8i16 code paths. We
never need to form pshufb for the single-input shuffles because we have
effective target-specific combines to form it there, but we were missing
its effectiveness in the blends.
llvm-svn: 229851
them into permutes and a blend with the generic decomposition logic.
This works really well in almost every case and lets the code only
manage the expansion of a single input into two v8i16 vectors to perform
the actual shuffle. The blend-based merging is often much nicer than the
pack based merging that this replaces. The only place where it isn't we
end up blending between two packs when we could do a single pack. To
handle that case, just teach the v2i64 lowering to handle these blends
by digging out the operands.
With this we're down to only really random permutations that cause an
explosion of instructions.
llvm-svn: 229849
v16i8 shuffles, and replace it with new facilities.
This uses precise patterns to match exact unpacks, and the new
generalized unpack lowering only when we detect a case where we will
have to shuffle both inputs anyways and they terminate in exactly
a blend.
This fixes all of the blend horrors that I uncovered by always lowering
blends through the vector shuffle lowering. It also removes *sooooo*
much of the crazy instruction sequences required for v16i8 lowering
previously. Much cleaner now.
The only "meh" aspect is that we sometimes use pshufb+pshufb+unpck when
it would be marginally nicer to use pshufb+pshufb+por. However, the
difference there is *tiny*. In many cases its a win because we re-use
the pshufb mask. In others, we get to avoid the pshufb entirely. I've
left a FIXME, but I'm dubious we can really do better than this. I'm
actually pretty happy with this lowering now.
For SSE2 this exposes some horrors that were really already there. Those
will have to fixed by changing a different path through the v16i8
lowering.
llvm-svn: 229846
on things not being marked as either custom or legal, but we now do
custom lowering of more VSELECT nodes. To cope with this, manually
replicate the legality tests here. These have to stay in sync with the
set of tests used in the custom lowering of VSELECT.
Ideally, we wouldn't do any of this combine-based-legalization when we
have an actual custom legalization step for VSELECT, but I'm not going
to be able to rewrite all of that today.
I don't have a test case for this currently, but it was found when
compiling a number of the test-suite benchmarks. I'll try to reduce
a test case and add it.
This should at least fix the test-suite fallout on build bots.
llvm-svn: 229844
lowering paths. I'm going to be leveraging this to simplify a lot of the
overly complex lowering of v8 and v16 shuffles in pre-SSSE3 modes.
Sadly, this isn't profitable on v4i32 and v2i64. There, the float and
double blending instructions for pre-SSE4.1 are actually pretty good,
and we can't beat them with bit math. And once SSE4.1 comes around we
have direct blending support and this ceases to be relevant.
Also, some of the test cases look odd because the domain fixer
canonicalizes these to floating point domain. That's OK, it'll use the
integer domain when it matters and some day I may be able to update
enough of LLVM to canonicalize the other way.
This restores almost all of the regressions from teaching x86's vselect
lowering to always use vector shuffle lowering for blends. The remaining
problems are because the v16 lowering path is still doing crazy things.
I'll be re-arranging that strategy in more detail in subsequent commits
to finish recovering the performance here.
llvm-svn: 229836
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.
However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.
Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).
This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!
There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.
llvm-svn: 229835
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
A null MCTargetStreamer allows IRObjectFile to ignore target-specific
directives. Previously we were crashing.
Differential Revision: http://reviews.llvm.org/D7711
llvm-svn: 229797
This involved moving two non-subtarget dependent features (64-bitness
and the driver interface) to the NVPTX target machine and updating
the uses (or migrating around the subtarget use for ease of review).
Otherwise use the cached subtarget or create a default subtarget
based on the TargetMachine cpu and feature string for the module
level assembler emission.
llvm-svn: 229785
VOP2 declares vsrc1, but VOP3 declares src1.
We can't use the same "ins" if the operands have different names in VOP2
and VOP3 encodings.
This fixes a hang in geometry shaders which spill M0 on VI.
(BTW it doesn't look like M0 needs spilling and the spilling seems
duplicated 3 times)
llvm-svn: 229752
Summary:
These ISA's didn't add any instructions so they are almost identical to
Mips32r2 and Mips64r2. Even the ELF e_flags are the same, However the ISA
revision in .MIPS.abiflags is 3 or 5 respectively instead of 2.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: tomatabacu, llvm-commits, atanasyan
Differential Revision: http://reviews.llvm.org/D7381
llvm-svn: 229695
Summary:
Parse for an MCExpr instead of an Identifier and use the symbol for relocations, not just the symbol's name.
This fixes errors when using local labels in .cpsetup (PR22518).
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D7697
llvm-svn: 229671