Both MCStreamer and MCObjectStreamer were maintaining a current section
variable and they were slightly out of sync. I don't think this was observable,
but was inefficient and error prone.
Changing this requires a few cascading changes:
* SwitchSection has to call ChangeSection earlier for ChangeSection to see
the old section.
* With that change, ChangeSection cannot call EmitLabel, since during
ChangeSection we are still in the old section.
* When the object streamer requires a begin label, just reused the existing
generic support for begin labels instead of calling EmitLabel directly.
llvm-svn: 238357
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
Create a low-overhead path for `EmitLabelDifference()` that emits a
emits an absolute number when (1) the output is an object stream and (2)
the two symbols are in the same data fragment.
This drops memory usage on Mach-O from 975 MB down to 919 MB (5.8%).
The only call is when `!doesDwarfUseRelocationsAcrossSections()` --
i.e., on Mach-O -- since otherwise an absolute offset from the start of
the section needs a relocation. (`EmitLabelDifference()` is cheaper on
ELF anyway, since it creates 1 fewer temp symbol, and it gets called far
less often. It's not clear to me if this is even a bottleneck there.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 237876
Summary:
When instruction bundling is enabled and the -mc-relax-all flag is
set, we can write bundle padding directly into fragments and avoid
creating large number of fragments significantly reducing LLVM MC
memory usage.
Test Plan: Regression test attached
Reviewers: eliben
Subscribers: jfb, mseaborn
Differential Revision: http://reviews.llvm.org/D8072
llvm-svn: 234714
The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
llvm-svn: 232842
There are two main advantages to doing this
* Targets that only need to handle one of the formats specially don't have
to worry about the others. For example, x86 now only registers a
constructor for the COFF streamer.
* Changes to the arguments passed to one format constructor will not impact
the other formats.
llvm-svn: 232699
Clang's static analyzer found several potential cases of undefined
behavior, use of un-initialized values, and potentially null pointer
dereferences in tablegen, Support, MC, and ADT. This cleans them up
with specific assertions on the assumptions of the code.
llvm-svn: 224154
When LLVM emits DWARF call frame information, it currently creates a local,
section-relative symbol in the code section, which is pointed to by a
relocation on the .eh_frame section. However, for C++ we emit some functions in
section groups, and the SysV ABI has some rules to make it easier to remove
these sections
(http://www.sco.com/developers/gabi/latest/ch4.sheader.html#section_group_rules):
A symbol table entry with STB_LOCAL binding that is defined relative to one
of a group's sections, and that is contained in a symbol table section that is
not part of the group, must be discarded if the group members are discarded.
References to this symbol table entry from outside the group are not allowed.
This means that we need to use the function symbol for the relocation, not a
temporary symbol.
There was a comment in the code claiming that the local symbol was used to
avoid creating a relocation, but a relocation must be created anyway as the
code and CFI are in different sections.
llvm-svn: 221150
Summary:
Currently when emitting a label, a new data fragment is created for it if the
current fragment isn't a data fragment.
This change instead enqueues the label and attaches it to the next fragment
(e.g. created for the next instruction) if possible.
When bundle alignment is not enabled, this has no functionality change (it
just results in fewer extra fragments being created). For bundle alignment,
previously labels would point to the beginning of the bundle padding instead
of the beginning of the emitted instruction. This was not only less efficient
(e.g. jumping to the nops instead of past them) but also led to miscalculation
of the address of the GOT (since MC uses a label difference rather than
emitting a "." symbol).
Fixes https://code.google.com/p/nativeclient/issues/detail?id=3982
Test Plan: regression test attached
Reviewers: jvoung, eliben
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D5915
llvm-svn: 220439
In assembly the expression a=b is parsed as an assignment, so it should be
printed as one.
This remove a truly horrible hack for producing a label with "a=.". It would
be used by codegen but would never be reached by the asm parser. Sorry I
missed this when it was first committed.
llvm-svn: 211639
diagnostic that includes location information.
Currently if one has this assembly:
.quad (0x1234 + (4 * SOME_VALUE))
where SOME_VALUE is undefined ones gets the less than
useful error message with no location information:
% clang -c x.s
clang -cc1as: fatal error: error in backend: expected relocatable expression
With this fix one now gets a more useful error message
with location information:
% clang -c x.s
x.s:5:8: error: expected relocatable expression
.quad (0x1234 + (4 * SOME_VALUE))
^
To do this I plumbed the SMLoc through the MCObjectStreamer
EmitValue() and EmitValueImpl() interfaces so it could be used
when creating the MCFixup.
rdar://12391022
llvm-svn: 206906
To support compression for debug_line and debug_frame a different
approach is required. To simplify review, revert the old implementation
and XFAIL the test case. New implementation to follow shortly.
Reverts r205059 and r204958.
llvm-svn: 205989
I don't think this is reachable by any frontend (why would you transform
asm to asm+debug info?) but it helps tidy up some of this code, avoid
the weird special case of "emit the first CU, store the label, then emit
the rest" in MCDwarfLineTable::Emit by instead having the
DWARF-for-assembly case use the same codepath as DwarfDebug.cpp, by
registering the label of the debug_line section, thus causing it to be
emitted. (with a special case in asm output to just emit the label since
asm output uses the .loc directives, etc, rather than the debug_loc
directly)
llvm-svn: 205286
1) When creating a .debug_* section and instead create a .zdebug_
section.
2) When creating a fragment in a .zdebug_* section, make it a compressed
fragment.
3) When computing the size of a compressed section, compress the data
and use the size of the compressed data.
4) Emit the compressed bytes.
Also, check that only if a section has a compressed fragment, then that
is the only fragment in the section.
Assert-fail if the fragment's data is modified after it is compressed.
Initial review on llvm-commits by Eric Christopher and Rafael Espindola.
llvm-svn: 204958
This replaces several "compile unit ID -> thing" mappings in favor of
one mapping from CUID to the whole line table structure (files,
directories, and lines).
This is another step along the way to refactoring out reusable
components of line table handling for use when generating debug_line.dwo
for fission type units.
Also, might be a good basis to fold some of this handling down into
MCStreamers to avoid the special case of "One line table when doing asm
printing, line table per CU otherwise" by building it into the different
MCStreamer implementations.
llvm-svn: 203821
Recommitting r201380 (reverted in r201389)
Recommitting r201351 and r201355 (reverted in r201351 and r201355)
We weren't emitting the an empty (header only) line table when the line
table was empty - this made the DWARF invalid (the compile unit would
point to the zero-size debug_lines section where there should've been an
empty line table but there was nothing at all). Fix that, and as a
consequence this works around/addresses PR18809.
Also, we emit a non-empty line table to workaround a darwin linker bug,
so XFAILing on darwin too.
Also, mark the test as 'REQUIRES: object-emission' because it does.
llvm-svn: 201429
Recommitting r201351 and r201355 (reverted in r201351 and r201355)
We weren't emitting the an empty (header only) line table when the line
table was empty - this made the DWARF invalid (the compile unit would
point to the zero-size debug_lines section where there should've been an
empty line table but there was nothing at all). Fix that, and as a
consequence this works around/addresses PR18809.
llvm-svn: 201380
Needed to fix PR18303 to correctly re-encode the instruction if it
is relaxed.
We keep a copy of the MCSubtargetInfo to make sure that we are not
effected by future changes to the subtarget info coming from the
assembler (e.g. when parsing .code 16 directived).
llvm-svn: 200347
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
llvm-svn: 200129
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
llvm-svn: 192181
When MC was first added, targets could use hasRawTextSupport to keep features
working before they were added to the MC interface.
The design goal of MC is to provide an uniform api for printing assembly and
object files. Short of relaxations and other corner cases, a object file is
just another representation of the assembly.
It was never the intention that targets would keep doing things like
if (hasRawTextSupport())
Set flags in one way.
else
Set flags in another way.
When they do that they create two code paths and the object file is no longer
just another representation of the assembly. This also then requires testing
with llc -filetype=obj, which is extremelly brittle.
This patch removes some of these hacks by replacing them with smaller ones.
The ARM flag setting is trivial, so I just moved it to the constructor. For
Mips, the patch adds two temporary hack directives that allow the assembly
to represent the same things as the object file was already able to.
The hope is that the mips developers will replace the hack directives with
the same ones that gas uses and drop the -print-hack-directives flag.
I will also try to implement a target streamer interface, so that we can
move this out of the common code.
In summary, for any new work, two rules of the thumb are
* Don't use "llc -filetype=obj" in tests.
* Don't add calls to hasRawTextSupport.
llvm-svn: 192035
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
The compiler occasionally generates multiple .loc directives in a row
(at the same instruction address). These need to be transformed into
multple actual .debug_line table entries, since they are used to signal
certain information to the debugger (e.g. if the opening brace of a
function body is on the same line as the declaration).
The MCAsmStreamer version of EmitDwarfLocDirective handles this
correctly by emitting a .loc directive every time it is called.
However, the MCObjectStream version simply defaults to recording
the information and emitting only a single table entry later,
e.g. when EmitInstruction is called.
This patch introduces a MCAsmStreamer::EmitDwarfLocDirective
version that emits a line table entry for a .loc directive
that may already be pending before recording the new directive.
(This is similar to how this is handled in GNU as.)
With this patch (and the code alignment factor patch) applied,
I'm now getting identical DWARF .debug sections for all test-suite
object files on PowerPC for the internal and the external assembler.
llvm-svn: 184357
With bundle alignment, instructions all get their own MCFragments
(unless they are in a bundle-locked group). For instructions with
fixups, this is an MCDataFragment. Emitting actual data (e.g. for
.long) attempts to re-use MCDataFragments, which we don't want int
this case since it leads to fragments which exceed the bundle size.
So, don't reuse them in this case.
Also adds a test and fixes some formatting.
llvm-svn: 175316
isa<> and dyn_cast<>. In several places, code is already hacking around
the absence of this, and there seem to be several interfaces that might
be lifted and/or devirtualized using this.
This change was based on a discussion with Jim Grosbach about how best
to handle testing for specific MCStreamer subclasses. He said that this
was the correct end state, and everything else was too hacky so
I decided to just make it so.
No functionality should be changed here, this is just threading the kind
through all the constructors and setting up the classof overloads.
llvm-svn: 174113
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
within the codegen EK_GPRel64BlockAddress. This was not
supported for direct object output and resulted in an assertion.
This change adds support for EK_GPRel64BlockAddress for
direct object.
One fallout from this is to turn on rela relocations
for mips64 to match gas.
llvm-svn: 162334
debug info for assembly files. We were already doing the right thing when
producing debug info for C/C++.
ELF linkers don't know dwarf, so they depend on these relocations to produce
valid dwarf output.
llvm-svn: 151655
file error checking. Use that to error on an unfinished cfi_startproc.
The error is not nice, but is already better than a segmentation fault.
llvm-svn: 147717
generates the dwarf Compile Unit DIE and a dwarf subprogram DIE for each
non-temporary label.
The next part will be to get the clang driver to enable this when assembling
a .s file. rdar://9275556
llvm-svn: 146262
TargetAsmInfo, which in turn pulls in TargetRegisterInfo, etc. :-( There are
other cases of violations, but this is probably the worst.
This patch is but one small step towards fixing this. 500 more steps to go. :-(
llvm-svn: 135131
for all symbol differences and can drop the old EmitPCRelSymbolValue
method.
This also make getExprForFDESymbol on ELF equal to the one on MachO, and it
can be made non-virtual.
llvm-svn: 130634