This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
It currently is in an unnamed namespace and then it shouldn't be used
from something in the header file. This actually triggers a warning with
GCC:
../include/llvm/IR/Verifier.h:39:7: warning: ‘llvm::TBAAVerifier’ has a field ‘llvm::TBAAVerifier::Diagnostic’ whose type uses the anonymous namespace [enabled by default]
llvm-svn: 289942
This is intended to be used (in a later patch) by the BitcodeReader
to detect invalid TBAA and drop them when loading bitcode, so that
we don't break client that have legacy bitcode with possible invalid
TBAA.
Differential Revision: https://reviews.llvm.org/D27838
llvm-svn: 289927
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
This used to be allowed before r289402 by default (before r289402 you
could have TBAA metadata on any instruction), and while I'm not sure
that it helps, it does sound reasonable enough to not fail the verifier
and we have out-of-tree users who use this.
llvm-svn: 289872
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
llvm-svn: 287783
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
llvm-svn: 286291
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
llvm-svn: 285624
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
Reapplies 283390 with a forgotten testcase.
llvm-svn: 283400
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
llvm-svn: 283390
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Delete the dead code for Write(ilist_iterator) in the IR Verifier,
inline report(ilist_iterator) at its call sites in the MachineVerifier,
and use simple_ilist<>::iterator in SymbolTableListTraits.
The only remaining reference to ilist_iterator outside of the ilist
implementation is from MachineInstrBundleIterator. I'll get rid of that
in a follow-up.
llvm-svn: 280565
Summary:
[Coroutines] Part 9: Add cleanup subfunction.
This patch completes coroutine heap allocation elision. Now, the heap elision example from docs\Coroutines.rst compiles and produces expected result (see test/Transform/Coroutines/ex3.ll)
Intrinsic Changes:
* coro.free gets a token parameter tying it to coro.id to allow reliably discovering all coro.frees associated with a particular coroutine.
* coro.id gets an extra parameter that points back to a coroutine function. This allows to check whether a coro.id describes the enclosing function or it belongs to a different function that was later inlined.
CoroSplit now creates three subfunctions:
# f$resume - resume logic
# f$destroy - cleanup logic, followed by a deallocation code
# f$cleanup - just the cleanup code
CoroElide pass during devirtualization replaces coro.destroy with either f$destroy or f$cleanup depending whether heap elision is performed or not.
Other fixes, improvements:
* Fixed buglet in Shape::buildFrame that was not creating coro.save properly if coroutine has more than one suspend point.
* Switched to using variable width suspend index field (no longer limited to 32 bit index field can be as little as i1 or as large as i<whatever-size_t-is>)
Reviewers: majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23844
llvm-svn: 279971
Summary:
1. Make coroutine representation more robust against optimization that may duplicate instruction by introducing coro.id intrinsics that returns a token that will get fed into coro.alloc and coro.begin. Due to coro.id returning a token, it won't get duplicated and can be used as reliable indicator of coroutine identify when a particular coroutine call gets inlined.
2. Move last three arguments of coro.begin into coro.id as they will be shared if coro.begin will get duplicated.
3. doc + test + code updated to support the new intrinsic.
Reviewers: mehdi_amini, majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23412
llvm-svn: 278481
Summary:
This is the 4c patch of the coroutine series. CoroElide pass now checks if PostSplit coro.begin
is referenced by coro.subfn.addr intrinsics. If so replace coro.subfn.addrs with an appropriate coroutine
subfunction associated with that coro.begin.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization <= we are here
5.Add CGSCC restart trigger + tests.
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23229
llvm-svn: 277908
This is the forth patch in the coroutine series. CoroEaly pass now lowers coro.resume
and coro.destroy intrinsics by replacing them with an indirect call to an address
returned by coro.subfn.addr intrinsic. This is done so that CGPassManager recognizes
devirtualization when CoroElide replaces a call to coro.subfn.addr with an appropriate
function address.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22998
llvm-svn: 277765
Summary:
This commit changes the Verifier class to accept a Module via the
constructor to make it obvious that a specific instance of the class is
only intended to work with a specific module. The `updateModule` setter
(despite being private) was making this fact less transparent.
There are fields in the `Verifier` class like `DeoptimizeDeclarations`
and `GlobalValueVisited` which are module specific, so a given
Verifier instance will not in fact work across multiple modules today.
This change just makes that more obvious.
The motivation is to make it easy to get to the datalayout of the
module unambiguously. That is required to verify that `inttoptr` and
`ptrtoint` constant expressions are well typed in the face of
non-integral pointer types.
Reviewers: dexonsmith, bkramer, majnemer, chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D23040
llvm-svn: 277409
This broke some out-of-tree AMDGPU tests that relied on the old behavior
wherein isIntrinsic() would return true for any function that starts
with "llvm.". And in general that change will not play nicely with
out-of-tree backends.
llvm-svn: 277087
Summary:
This change adds a `ni` specifier in the `datalayout` string to denote
pointers in some given address spaces as "non-integral", and adds some
typing rules around these special pointers.
Reviewers: majnemer, chandlerc, atrick, dberlin, eli.friedman, tstellarAMD, arsenm
Subscribers: arsenm, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22488
llvm-svn: 277085
Summary:
getName() involves a hashtable lookup, so is expensive given how
frequently isIntrinsic() is called. (In particular, many users cast to
IntrinsicInstr or one of its subclasses before calling
getIntrinsicID().)
This has an incidental functional change: Before, isIntrinsic() would
return true for any function whose name started with "llvm.", even if it
wasn't properly an intrinsic. The new behavior seems more correct to
me, because it's strange to say that isIntrinsic() is true, but
getIntrinsicId() returns "not an intrinsic".
Some callers want the old behavior -- they want to know whether the
caller is a recognized intrinsic, or might be one in some other version
of LLVM. For them, we added Function::hasLLVMReservedName(), which
checks whether the name starts with "llvm.".
This change is good for a 1.5% e2e speedup compiling a large Eigen
benchmark.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22065
llvm-svn: 276942
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
Move Verifier::verifyIntrinsicType to Intrinsics::matchIntrinsicsType. Will be used to accumulate overloaded types of a given intrinsic by the upcoming patch to fix intrinsics names when overloaded types are renamed.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D19372
llvm-svn: 273424
This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
llvm-svn: 273336
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
Arrange to call verify(Function &) on each function, followed by
verify(Module &), whether the verifier is being used from the pass or
from verifyModule(). As a side effect, this fixes an issue that caused
us not to call verify(Function &) on unmaterialized functions from
verifyModule().
Differential Revision: http://reviews.llvm.org/D21042
llvm-svn: 271956
Remove previously unreachable code that verifies that a function definition has
an entry block. By definition, a function definition has at least one block.
llvm-svn: 271948
Summary:
It isn't clear what is the operational meaning of loading or storing an
unsized types, since it cannot be lowered into something meaningful.
Since there does not seem to be any practical need for it either, make
such loads and stores illegal IR.
Reviewers: majnemer, chandlerc
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20846
llvm-svn: 271402
This will be necessary to allow the global merge pass to attach
multiple debug info metadata nodes to global variables once we reverse
the edge from DIGlobalVariable to GlobalVariable.
Differential Revision: http://reviews.llvm.org/D20414
llvm-svn: 271358
Since r268966 the modern Verifier pass defaults to stripping invalid debug info
in nonasserts builds. This patch ports this behavior back to the legacy
Verifier pass as well. The primary motivation is that the clang frontend
accepts bitcode files as input but is still using the legacy pass pipeline.
Background: The problem I'm trying to solve with this sequence of patches is
that historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about breaking
bitcode compatibility with existing producers. For example, we don't necessarily
want IR produced by an older version of clang to be rejected by an LTO link just
because of malformed debug info, and rather provide an option to strip it. Note
that merely outdated (but well-formed) debug info would continue to be
auto-upgraded in this scenario.
http://reviews.llvm.org/D20629
<rdar://problem/26448800>
llvm-svn: 270768
This new verifier rule lets us unambigously pick a calling convention
when creating a new declaration for
`@llvm.experimental.deoptimize.<ty>`. It is also congruent with our
lowering strategy -- since all calls to `@llvm.experimental.deoptimize`
are lowered to calls to `__llvm_deoptimize`, it is reasonable to enforce
a unique calling convention.
Some of the tests that were breaking this verifier rule have had to be
split up into different .ll files.
The inliner was violating this rule as well, and has been fixed to avoid
producing invalid IR.
llvm-svn: 269261
allow the transformation to strip invalid debug info.
This patch separates the Verifier into an analysis and a transformation
pass, with the transformation pass optionally stripping malformed
debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19988
rdar://problem/25818489
This reapplies r268937 without modifications.
llvm-svn: 268966
This patch introduces a new option -lto-strip-invalid-debug-info, which
drops malformed debug info from the input.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
rdar://problem/25818489
http://reviews.llvm.org/D19987
This reapplies 268936 with a test case fix for Linux (-exported-symbol foo)
llvm-svn: 268965
allow the transformation to strip invalid debug info.
This patch separates the Verifier into an analysis and a transformation
pass, with the transformation pass optionally stripping malformed
debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19988
rdar://problem/25818489
llvm-svn: 268937
This patch introduces a new option -lto-strip-invalid-debug-info, which
drops malformed debug info from the input.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
rdar://problem/25818489
http://reviews.llvm.org/D19987
llvm-svn: 268936
info metadata errors separately. (NFC)
This patch refactors the Verifier so it can diagnose IR validation errors
and debug info metadata errors separately.
The motivation behind this change is that broken (or outdated) debug info
can be "recovered" from by stripping the debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info.
We want to be able to make the verifier stricter without having to worry
about breaking bitcode compatibility with existing producers. For example,
we don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19986
rdar://problem/25818489
llvm-svn: 268778
in a debug-info-bearing function has a debug location attached to it. Failure to
do so causes an "!dbg attachment points at wrong subprogram for function"
assertion failure when the inliner sets up inline scope info.
rdar://problem/25878916
This reaplies r267320 without changes after fixing an issue in the OpenMP IR
generator in clang.
llvm-svn: 267370
in a debug-info-bearing function has a debug location attached to it. Failure to
do so causes an "!dbg attachment points at wrong subprogram for function"
assertion failure when the inliner sets up inline scope info.
rdar://problem/25878916
llvm-svn: 267320
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Speed up Verifier output by sharing a single ModuleSlotTracker for the
duration. There should be no functionality change here except for much
faster output when there's more than one statement.
Now the Verifier won't be traversing the full Metadata graph every time
it prints an error. The TypePrinter is still not shared, but that would
take some extra plumbing.
llvm-svn: 266889
While using a raw_null_ostream meant that the Verifier didn't have to
think about whether to print, it's actually quite expensive to print out
IR. Only print if the output is going somewhere.
llvm-svn: 266884
Fix a couple of places in the Verifier that call `getScope()` instead of
`getRawScope()`. Both DIDerivedType::getScope and
DICompositeType::getScope return a DITypeRef right now (which wraps a
Metadata*) so I don't think there's currently an observable bug. I
found this because a future commit that will change them to cast to
DIScope*.
llvm-svn: 266552
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Add a check to catch violations. ~60 tests were broken and prevented
this change to be committed. Adrian and I (thanks Adrian!) went
through them in the last week or so updating. The check can be
done more efficiently but I'd still like to get this in ASAP to
avoid more broken tests to be checked in (if any).
PR: 27101
llvm-svn: 266102
Previously, we were using isGCRelocate predicates. Using a subclass of IntrinsicInst is far more idiomatic. The refactoring also enables a couple of minor simplifications and code sharing.
llvm-svn: 266098
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
This reverts commit r265765, reapplying r265759 after changing a call from
LocalAsMetadata::get to ValueAsMetadata::get (and adding a unit test). When a
local value is mapped to a constant (like "i32 %a" => "i32 7"), the new debug
intrinsic operand may no longer be pointing at a local.
http://lab.llvm.org:8080/green/job/clang-stage1-configure-RA_build/19020/
The previous coommit message follows:
--
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265768
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265759
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
A ``swifterror`` attribute can be applied to a function parameter or an
AllocaInst.
This commit does not include any target-specific change. The target-specific
optimization will come as a follow-up patch.
Differential Revision: http://reviews.llvm.org/D18092
llvm-svn: 265189
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
A DICompileUnit that is not listed in llvm.dbg.cu will cause assertion
failures and/or crashes in the backend. The Verifier should reject this.
rdar://problem/25369499
llvm-svn: 264657
Reject the following IR as malformed (assuming that %entry, %next are
not in a loop):
next:
%y = phi i32 [ 0, %entry ]
%x = phi i32 [ %y, %entry ]
Such PHI nodes came up in PR26718. While there was no consensus on
whether or not this is valid IR, most opinions on that bug and in a
discussion on the llvm-dev mailing list tended towards a
"strict interpretation" (term by Joseph Tremoulet) of PHI node uses.
Also, the language reference explicitly states that "the use of each
incoming value is deemed to occur on the edge from the corresponding
predecessor block to the current block" and
`DominatorTree::dominates(Instruction*, Use&)` uses this definition as
well.
For the code mentioned in PR15384, clang does not compile to such PHIs
(anymore?). The test case still hangs when replacing `%tmp6` with `%tmp`
in revisions before r176366 (where PR15384 has been fixed). The
occurrence of %tmp6 therefore was probably unintentional. Its value is
not used except in other PHIs.
Reviewers: majnemer, reames, JosephTremoulet, bkramer, grosser, jdoerfert, kparzysz, sanjoy
Differential Revision: http://reviews.llvm.org/D18443
llvm-svn: 264528
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
Generally speaking, this can only happen with unreachable code.
However, neglecting to check for this condition would lead us to loop
forever.
llvm-svn: 262284