This is fixing pr31761: BasicAA is deducing NoAlias
on the result of the GEP if the base pointer is itself NoAlias.
This is possible only if the NoAlias on the base pointer is
deduced with a non-sized query: this should guarantee that
the pointers are belonging to different memory allocation
and that the GEP can't legally jump from one to another.
Differential Revision: https://reviews.llvm.org/D29216
llvm-svn: 293293
Inlining in getAddExpr() can cause abnormal computational time in some cases.
New parameter -scev-addops-inline-threshold is intruduced with default value 500.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28812
llvm-svn: 293176
This reverts commit r292680. It is causing significantly worse
performance and test timeouts in our internal builds. I have already
routed reproduction instructions your way.
llvm-svn: 293092
bots ever since d0k fixed the CHECK lines so that it did something at
all.
It isn't actually testing SCEV directly but LSR, so move it into LSR and
the x86-specific tree of tests that already exists there. Target
dependence is common and unavoidable with the current design of LSR.
llvm-svn: 292774
become unavailable.
The AssumptionCache is now immutable but it still needs to respond to
DomTree invalidation if it ended up caching one.
This lets us remove one of the explicit invalidates of LVI but the
other one continues to avoid hitting a latent bug.
llvm-svn: 292769
Newer ppc supports unaligned memory access, it reduces the cost of unaligned memory access significantly. This patch handles this case in PPCTTIImpl::getMemoryOpCost.
This patch fixes pr31492.
Differential Revision: https://reviews.llvm.org/D28630
llvm-svn: 292680
To avoid regressions, make ScalarEvolution::createSCEV a bit more
clever.
Also get rid of some useless code in ScalarEvolution::howFarToZero
which was hiding this bug.
No new testcase because it's impossible to actually expose this bug:
we don't have any in-tree users of getUDivExactExpr besides the two
functions I just mentioned, and they both dodged the problem. I'll
try to add some interesting users in a followup.
Differential Revision: https://reviews.llvm.org/D28587
llvm-svn: 292449
runnig LCSSA over them prior to running the loop pipeline.
This also teaches the loop PM to verify that LCSSA form is preserved
throughout the pipeline's run across the loop nest.
Most of the test updates just leverage this new functionality. One has to be
relaxed with the new PM as IVUsers is less powerful when it sees LCSSA input.
Differential Revision: https://reviews.llvm.org/D28743
llvm-svn: 292241
First, I've moved a test of IVUsers from the LSR tree to a dedicated
IVUsers test directory. I've also simplified its RUN line now that the
new pass manager's loop PM is providing analyses on their own.
No functionality changed, but it makes subsequent changes cleaner.
llvm-svn: 292060
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
llvm-svn: 292039
Refines max backedge-taken count if a loop like
"for (int i = 0; i != n; ++i) { /* body */ }" is rotated.
Differential Revision: https://reviews.llvm.org/D28536
llvm-svn: 291704
This is both easier to understand, and produces a tighter bound in certain
cases.
Differential Revision: https://reviews.llvm.org/D28393
llvm-svn: 291701
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657
The original code considered only v2i64 as slow for this feature. This patch
consider all 128-bit long vector types as slow candidates.
In internal tests, extending this feature to all 128-bit vector types
resulted in an overall improvement of 1% on Exynos M1.
Differential revision: https://reviews.llvm.org/D27998
llvm-svn: 291616
invalid.
This fixes use-after-free bugs that will arise with any interesting use
of SCEV.
I've added a dedicated test that works diligently to trigger these kinds
of bugs in the new pass manager and also checks for them explicitly as
well as triggering ASan failures when things go squirly.
llvm-svn: 291426
The 'fast' costs should only work for shifts by uniform constants (uniform non-constant are lowered using the slow default implementation).
Logical shifts were not taking into account that we must mask the psrlw result, so the costs needed to be doubled.
Added missing AVX2/AVX512BW costs as well.
llvm-svn: 291391
This test case has been reduced from test/Analysis/RegionInfo/mix_1.ll and
provides us with a minimal example of a test case which caused problems while
working on an improved version of the RegionInfo analysis. We upstream this
test case, as it certainly can be helpful in future debugging and optimization
tests.
Test case reduced by Pratik Bhatu <cs12b1010@iith.ac.in>
llvm-svn: 290974
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.
In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).
* Shiffle-broadcast cost will be changed in Simon's upcoming patch.
Differential Revision: https://reviews.llvm.org/D28118
llvm-svn: 290810
This fixes the issue exposed in PR31393, where we weren't trying
sufficiently hard to diagnose bad TBAA metadata.
This does reduce the variety in the error messages we print out, but I
think the tradeoff of verifying more, simply and quickly overrules the
need for more helpful error messags here.
llvm-svn: 290713
BasicAA in r290603.
I've kept the basic testing in the new PM test file as that also covers
the AAManager invalidation logic. If/when there is a good place for
broader AA testing it could move there.
This test is somewhat unsatisfying as I can't get it to fail even with
ASan outside of explicit checks of the invalidation. Apparently we don't
yet have any test coverage of the BasicAA code paths using either the
domtree or loopinfo -- I made both of them always be null and check-llvm
passed.
llvm-svn: 290612
For vector GEPs, CastGEPIndices can end up in an infinite recursion, because
we compare the vector type to the scalar pointer type, find them different,
and then try to cast a type to itself.
Differential Revision: https://reviews.llvm.org/D28009
llvm-svn: 290260
This patch checks that the SlowMisaligned128Store subtarget feature is set
when penalizing such stores in getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D27677
llvm-svn: 289845
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
There was an efficiency problem with how we processed @llvm.assume in
ValueTracking (and other places). The AssumptionCache tracked all of the
assumptions in a given function. In order to find assumptions relevant to
computing known bits, etc. we searched every assumption in the function. For
ValueTracking, that means that we did O(#assumes * #values) work in InstCombine
and other passes (with a constant factor that can be quite large because we'd
repeat this search at every level of recursion of the analysis).
Several of us discussed this situation at the last developers' meeting, and
this implements the discussed solution: Make the values that an assume might
affect operands of the assume itself. To avoid exposing this detail to
frontends and passes that need not worry about it, I've used the new
operand-bundle feature to add these extra call "operands" in a way that does
not affect the intrinsic's signature. I think this solution is relatively
clean. InstCombine adds these extra operands based on what ValueTracking, LVI,
etc. will need and then those passes need only search the users of the values
under consideration. This should fix the computational-complexity problem.
At this point, no passes depend on the AssumptionCache, and so I'll remove
that as a follow-up change.
Differential Revision: https://reviews.llvm.org/D27259
llvm-svn: 289755
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
ConstantFolding tried to cast one of the scalar indices to a vector
type. Instead, use the vector type only for the first index (which
is the only one allowed to be a vector) and use its scalar type
otherwise.
Fixes PR31250.
Reviewers: majnemer
Differential Revision: https://reviews.llvm.org/D27389
llvm-svn: 289073
VSX has instructions lxsiwax/lxsdx that can load 32/64 bit value into VSX register cheaply. That patch makes it known to memory cost model, so the vectorization of the test case in pr30990 is beneficial.
Differential Revision: https://reviews.llvm.org/D26713
llvm-svn: 288560
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.
Differential Revision: https://reviews.llvm.org/D26277
llvm-svn: 288398
Note that the non-splat lshr+lshr test folded, but that does not
work in general. Something is missing or wrong in computeKnownBits
as the non-splat shl+shl test still shows.
llvm-svn: 288005
Currently LLVM assumes that a pointer addrspacecasted to a different addr space is equivalent to trunc or zext bitwise, which is not true. For example, in amdgcn target, when a null pointer is addrspacecasted from addr space 4 to 0, its value is changed from i64 0 to i32 -1.
This patch teaches LLVM not to assume known bits of addrspacecast instruction to its operand.
Differential Revision: https://reviews.llvm.org/D26803
llvm-svn: 287545
Summary:
This extends FCOPYSIGN support to 512-bit vectors.
I've also added tests to show what the 128-bit and 256-bit cases look like with broadcast loads.
Reviewers: delena, zvi, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26791
llvm-svn: 287298
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.
This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)
llvm-svn: 286832
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
These examples are variations that were inspired from a small subgraph taken
from paper.ll which are interesting as they show certain issues with infinite
loops.
llvm-svn: 286450
This patch avoids scalarization of CTLZ by instead expanding to use CTPOP (ref: "Hacker's Delight") when the necessary operations are available.
This also adds the necessary cost models for X86 SSE2 targets (the main beneficiary) to ensure vectorization only happens when its useful.
Differential Revision: https://reviews.llvm.org/D25910
llvm-svn: 286233
There is a bug describing poor cost model for floating point operations:
Bug 29083 - [X86][SSE] Improve costs for floating point operations. This
patch is the second one in series of patches dealing with cost model.
Differential Revision: https://reviews.llvm.org/D25722
llvm-svn: 285564
Summary:
We were trying to add APInt values with different bit sizes after
visiting an addrspacecast instruction which changed the bit width
of the pointer.
Reviewers: majnemer, hfinkel
Subscribers: hfinkel, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D24774
llvm-svn: 285407
With DQI but without VLX, lower v2i64 and v4i64 MUL operations with v8i64 MUL (vpmullq).
Updated cost table accordingly.
Differential Revision: https://reviews.llvm.org/D26011
llvm-svn: 285304
This reverts commit r285191.
LICM appears to rely on the Alias Set Tracker hitting lifetime markers to prevent
code from being moved outside of the original scope.
llvm-svn: 285227
There are two fixes here: one, AnalyzeUsesOfPointer can't return
false until it has checked all the uses of the pointer. Two, if a
global uses another global, we have to assume the address of the
first global escapes.
Fixes https://llvm.org/bugs/show_bug.cgi?id=30707 .
Differential Revision: https://reviews.llvm.org/D25798
llvm-svn: 285034
We were defaulting to SSE2 costs which weren't taking into account the availability of PBLENDW/PBLENDVB to improve merging of per-element shift results.
llvm-svn: 284939
In BasicAA GEP operand values get adjusted ("wrap-around") based on the
pointersize. Otherwise, in non-64b modes, AA could report false negatives.
However, a wrap-around is valid only for a fully evaluated expression.
It had been introduced to fix an alias problem in
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160118/326163.html.
This commit restricts the wrap-around to constant gep operands only where the
value is known at compile-time.
llvm-svn: 284908
Summary:
When SCEVRewriteVisitor traverses the SCEV DAG, it may visit the same SCEV
multiple times if this SCEV is referenced by multiple other SCEVs. This has
exponential time complexity in the worst case. Memoizing the results will
avoid re-visiting the same SCEV. Add a map to save the results, and override
the visit function of SCEVVisitor. Now SCEVRewriteVisitor only visit each
SCEV once and thus returns the same result for the same input SCEV.
This patch fixes PR18606, PR18607.
Reviewers: Sanjoy Das, Mehdi Amini, Michael Zolotukhin
Differential Revision: https://reviews.llvm.org/D25810
llvm-svn: 284868
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.
Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.
Differential Revision: https://reviews.llvm.org/D25682
llvm-svn: 284818
This is to avoid inlining too many multiplication operands into a SCEV, which could
take exponential time in the worst case.
Reviewers: Sanjoy Das, Mehdi Amini, Michael Zolotukhin
Differential Revision: https://reviews.llvm.org/D25794
llvm-svn: 284784