r355322 fixed this, however is being reverted due to concerns with
enabling it in other modes.
Change-Id: I6a939b7469b8fa196d5871a627eb2330dbd30f29
llvm-svn: 355698
The above builtins are currently implemented for MSVC mode, however GCC
also implements these. This patch enables them for all platforms.
Additionally, this corrects the type for these builtins to always be
'long int' to match the specification in the Intel Intrinsics Guide.
Change-Id: Ida34be98078709584ef5136c8761783435ec02b1
llvm-svn: 355322
This was originally part of:
D50924
and should resolve PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387
...but it was reverted because some bots using a gcc host compiler
would crash for unknown reasons with this included in the patch.
Trying again now to see if that's still a problem.
llvm-svn: 347527
This is a retry of rL340135 (reverted at rL340136 because of gcc host compiler crashing)
with 2 changes:
1. Move the code into a helper to reduce code duplication (and hopefully work-around the crash).
2. The original commit had a formatting bug in the docs (missing an underscore).
Original commit message:
This exposes the LLVM funnel shift intrinsics as more familiar bit rotation functions in clang
(when both halves of a funnel shift are the same value, it's a rotate).
We're free to name these as we want because we're not copying gcc, but if there's some other
existing art (eg, the microsoft ops that are modified in this patch) that we want to replicate,
we can change the names.
The funnel shift intrinsics were added here:
https://reviews.llvm.org/D49242
With improved codegen in:
https://reviews.llvm.org/rL337966https://reviews.llvm.org/rL339359
And basic IR optimization added in:
https://reviews.llvm.org/rL338218https://reviews.llvm.org/rL340022
...so these are expected to produce asm output that's equal or better to the multi-instruction
alternatives using primitive C/IR ops.
In the motivating loop example from PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387#c7
...we get the expected 'rolq' x86 instructions if we substitute the rotate builtin into the source.
Differential Revision: https://reviews.llvm.org/D50924
llvm-svn: 340137
This exposes the LLVM funnel shift intrinsics as more familiar bit rotation functions in clang
(when both halves of a funnel shift are the same value, it's a rotate).
We're free to name these as we want because we're not copying gcc, but if there's some other
existing art (eg, the microsoft ops that are modified in this patch) that we want to replicate,
we can change the names.
The funnel shift intrinsics were added here:
D49242
With improved codegen in:
rL337966
rL339359
And basic IR optimization added in:
rL338218
rL340022
...so these are expected to produce asm output that's equal or better to the multi-instruction
alternatives using primitive C/IR ops.
In the motivating loop example from PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387#c7
...we get the expected 'rolq' x86 instructions if we substitute the rotate builtin into the source.
Differential Revision: https://reviews.llvm.org/D50924
llvm-svn: 340135
Previously we emitted something like
rotl(x, n) {
n &= bitwidth-1;
return n != 0 ? ((x << n) | (x >> (bitwidth - n)) : x;
}
We use a select to avoid the undefined behavior on the (bitwidth - n) shift.
The middle and backend don't really recognize this as a rotate and end up emitting a cmov or control flow because of the select.
A better pattern is (x << (n & mask)) | (x << (-n & mask)) where mask is bitwidth - 1.
Fixes the main complaint in PR37387. There's still some work to be done if the user writes that sequence directly on a short or char where type promotion rules can prevent it from being recognized. The builtin is emitting direct IR with unpromoted types so that isn't a problem for it.
Differential Revision: https://reviews.llvm.org/D46656
llvm-svn: 331943
This allows for -fms-extensions to work the same on LP64. For example,
_BitScanReverse is expected to be 32-bit, matching Windows/LLP64, even
though long is 64-bit on x86_64 Darwin or Linux (LP64).
Implement this by adding a new character code 'N', which is 'int' if
the target is LP64 and the same 'L' otherwise
Differential Revision: https://reviews.llvm.org/D34377
rdar://problem/32599746
llvm-svn: 305875