If the CUDA toolkit is not installed to its default locations
in /usr/local/cuda, the user is forced to specify --cuda-path.
This is tedious and the driver can be smarter if well-known tools
(like ptxas) can already be found in the PATH environment variable.
Add option --cuda-path-ignore-env if the user wants to ignore
set environment variables. Also use it in the tests to make sure
the driver always finds the same CUDA installation, regardless
of the user's environment.
Differential Revision: https://reviews.llvm.org/D42642
llvm-svn: 323848
Clang can use CUDA-9.1 now, though new APIs (are not implemented yet.
The major change is that headers in CUDA-9.1 went through substantial
changes that started in CUDA-9.0 which required substantial changes
in the cuda compatibility headers provided by clang.
There are two major issues:
* CUDA SDK no longer provides declarations for libdevice functions.
* A lot of device-side functions have become nvcc's builtins and
CUDA headers no longer contain their implementations.
This patch changes the way CUDA headers are handled if we compile
with CUDA 9.x. Both 9.0 and 9.1 are affected.
* Clang provides its own declarations of libdevice functions.
* For CUDA-9.x clang now provides implementation of device-side
'standard library' functions using libdevice.
This patch should not affect compilation with CUDA-8. There may be
some observable differences for CUDA-9.0, though they are not expected
to affect functionality.
Tested: CUDA test-suite tests for all supported combinations of:
CUDA: 7.0,7.5,8.0,9.0,9.1
GPU: sm_20, sm_35, sm_60, sm_70
Differential Revision: https://reviews.llvm.org/D42513
llvm-svn: 323713
We can stash the cached transparent tag bit in existing pointer padding.
Everything coming out of ASTContext is always aligned to a multiple of
8, so we have 8 spare bits.
llvm-svn: 323528
Summary:
For OpenCL 1.1 embedded profile 64 bit integers i.e. long,
ulong including the appropriate vector data types and operations
on 64-bit integers are optional. The "cles_khr_int64" extension
string will be reported if the embedded profile implementation
supports 64-bit integers.
Reviewers: Anastasia, bader
Reviewed By: Anastasia, bader
Subscribers: bader, yaxunl, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D42532
llvm-svn: 323522
Summary:
Use corutine function arguments to initialize a promise type, but only
if the promise type defines a constructor that takes those arguments.
Otherwise, fall back to the default constructor.
Test Plan: check-clang
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: toby-allsopp, lewissbaker, EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D41820
llvm-svn: 323381
Analyzing problems which appear in scan-build results can be very
difficult, as after the launch no exact invocation is stored, and it's
super-hard to launch the debugger.
With this patch, the exact analyzer invocation appears in the footer,
and can be copied to debug/check reproducibility/etc.
rdar://35980230
llvm-svn: 323245
Summary:
The parameter overrides the underlying vfs used by ClangTool for
filesystem operations.
Patch by Vladimir Plyashkun.
Reviewers: alexfh, ilya-biryukov
Reviewed By: ilya-biryukov
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D41947
llvm-svn: 323195
Pass and return _Float16 as if it were an int or float for ARM, but with the
top 16 bits unspecified, similarly like we already do for __fp16.
We will implement proper half-precision function argument lowering in the ARM
backend soon, but want to use this workaround in the mean time.
Differential Revision: https://reviews.llvm.org/D42318
llvm-svn: 323185
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
Summary:
The MultiplexExternalSemaSource doesn't correctly overload the `getModule` function,
causing the multiplexer to not forward this call as intended.
Reviewers: v.g.vassilev
Reviewed By: v.g.vassilev
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D39416
llvm-svn: 323122
Summary:
This patch adds canonical delimiter support to the raw string formatting.
This allows matching delimiters to be updated to the canonical one.
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D42187
llvm-svn: 322956
This removes the following (already default-off) warnings from -Wextra:
-Wtautological-type-limit-compare,
-Wtautological-unsigned-zero-compare
-Wtautological-unsigned-enum-zero-compare
On the thread "[cfe-dev] -Wtautological-constant-compare issues", clang
code owners Richard Smith, John McCall, and Reid Kleckner as well as
libc++ code owner Marshall Clow stated that these new warnings are not
yet ready for prime time and shouldn't be part of -Wextra.
Furthermore, Vedant Kumar (Apple), Peter Hosek (Fuchsia), and me (Chromium)
expressed the same concerns (Vedant on that thread, Peter on
https://reviews.llvm.org/D39462, me on https://reviews.llvm.org/D41512).
So remove them from -Wextra, and remove TautologicalInRangeCompare from
TautologicalCompare too until they're usable with real-world code.
llvm-svn: 322901
Summary:
The new method 'OverridePreamble' allows to override the preamble of
any source file without checking if preamble bounds or dependencies
were changed.
This is used for completion in clangd.
Reviewers: bkramer, sammccall
Reviewed By: sammccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D41990
llvm-svn: 322853
Add PostAllocatorCall program point to represent the moment in the analysis
between the operator new() call and the constructor call. Pointer cast from
"void *" to the correct object pointer type has already happened by this point.
The new program point, unlike the previously used PostImplicitCall, contains a
reference to the new-expression, which allows adding path diagnostics over it.
Differential Revision: https://reviews.llvm.org/D41800
rdar://problem/12180598
llvm-svn: 322796
The callback runs after operator new() and before the construction and allows
the checker to access the casted return value of operator new() (in the
sense of r322780) which is not available in the PostCall callback for the
allocator call.
Update MallocChecker to use the new callback instead of PostStmt<CXXNewExpr>,
which gets called after the constructor.
Differential Revision: https://reviews.llvm.org/D41406
rdar://problem/12180598
llvm-svn: 322787
Represent the symbolic value for results of pointer arithmetic on void pointers
in a different way: instead of making void-typed element regions, make
char-typed element regions.
Add an assertion that ensures that no void-typed regions are ever constructed.
This is a refactoring of internals that should not immediately affect
the analyzer's (default) behavior.
Differential Revision: https://reviews.llvm.org/D40939
llvm-svn: 322775
The -analyzer-config c++-allocator-inlining experimental option allows the
analyzer to reason about C++ operator new() similarly to how it reasons about
regular functions. In this mode, operator new() is correctly called before the
construction of an object, with the help of a special CFG element.
However, the subsequent construction of the object was still not performed into
the region of memory returned by operator new(). The patch fixes it.
Passing the value from operator new() to the constructor and then to the
new-expression itself was tricky because operator new() has no call site of its
own in the AST. The new expression itself is not a good call site because it
has an incorrect type (operator new() returns 'void *', while the new expression
is a pointer to the allocated object type). Additionally, lifetime of the new
expression in the environment makes it unsuitable for passing the value.
For that reason, an additional program state trait is introduced to keep track
of the return value.
Finally this patch relaxes restrictions on the memory region class that are
required for inlining the constructor. This change affects the old mode as well
(c++-allocator-inlining=false) and seems safe because these restrictions were
an overkill compared to the actual problems observed.
Differential Revision: https://reviews.llvm.org/D40560
rdar://problem/12180598
llvm-svn: 322774
In most cases using
`N->getState()->getSVal(E, N->getLocationContext())`
is ugly, verbose, and also opens up more surface area for bugs if an
inconsistent location context is used.
This patch introduces a helper on an exploded node, and ensures
consistent usage of either `ExplodedNode::getSVal` or
`CheckContext::getSVal` across the codebase.
As a result, a large number of redundant lines is removed.
Differential Revision: https://reviews.llvm.org/D42155
llvm-svn: 322753
All usages of isSubRegionOf separately check for reflexive case, and in
any case, set theory tells us that each set is a subset of itself.
Differential Revision: https://reviews.llvm.org/D42140
llvm-svn: 322752
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
Summary:
As result deduplication or reduction is not supported in the framework,
we should leave the deplication to tools (if needed) until the framework supports it.
Reviewers: bkramer
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D42111
llvm-svn: 322691
Summary:
This would allow code completion clients to know which context is visited during Sema code completion.
Also some changes:
* add `EnteredContext` callback in VisibleDeclConsumer.
* add a simple unittest for sema code completion (only for visited contexts at the moment).
Reviewers: ilya-biryukov
Reviewed By: ilya-biryukov
Subscribers: mgorny, bkramer, cfe-commits
Differential Revision: https://reviews.llvm.org/D42071
llvm-svn: 322661