Without the 13th field, the "emission kind" field defaults to 0 (which
is not equal to either of the values of the emission kind enum (1 ==
full debug info, 2 == line tables only)).
In this particular instance, the comparison with "FullDebugInfo" was
done when adding elements to the ranges list - so for these test cases
no values were added to the ranges list.
This got weirder when emitting debug_loc entries as the addresses should
be relative to the range of the CU if the CU has only one range (the
reasonable assumption is that if we're emitting debug_loc lists for a CU
that CU has at least one range - but due to the above situation, it has
zero) so the ranges were emitted relative to the start of the section
rather than relative to the start of the CU's singular range.
Fix these tests by accounting for the difference in the description of
debug_loc entries (in some cases making the test ignorant to these
differences, in others adding the extra label difference expression,
etc) or the presence/absence of high/low_pc on the CU, and add the 13th
field to their CUs to enable proper "full debug info" emission here.
In a future commit I'll fix up a bunch of other test cases that are not
so rigorously depending on this behavior, but still doing similarly
weird things due to the missing 13th field.
llvm-svn: 214937
This reverts r214893, re-applying r214881 with the test case relaxed a bit to
satiate the build bots.
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214928
Commits r213915 and r214718 fix recognition of shuffle masks for vmrg*
and vpku*um instructions for a little-endian target, by swapping the
input arguments. The vsldoi instruction requires similar treatment,
and also needs its shift count adjusted for little endian.
Reviewed by Ulrich Weigand.
This is a bug fix candidate for release 3.5 (and hopefully the last of
those for PowerPC).
llvm-svn: 214923
This is mostly a cleanup, but it changes a fairly old behavior.
Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.
Now to get a usable behavior out of opt one doesn't need the funny
looking command line:
opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts
llvm-svn: 214919
a test case.
We also miscompile this test case which is showing a serious flaw in the
single-input v8i16 shuffle code. I've left the specific instruction
checks FIXME-ed out until I can address the bug in the single-input
code, but I wanted to separate out a significant functionality change to
produce correct code from a very simple and targeted crasher fix.
The miscompile problem stems from keeping track of inputs by value
rather than by index. As a consequence of doing this, we can't reliably
update those inputs because they might swap and we can't detect this
without copying the mask.
The blend code now uses indices for the input lists and this seems
strictly better. It also should make it easier to sort things and do
other cleanups. I think the time has come to simplify The Great Lambda
here.
llvm-svn: 214914
Optimize the following IR:
%1 = tail call noalias i8* @calloc(i64 1, i64 4)
%2 = bitcast i8* %1 to i32*
; This store is dead and should be removed
store i32 0, i32* %2, align 4
Memory returned by calloc is guaranteed to be zero initialized. If the value being stored is the constant zero (and the store is not otherwise observable across threads), we can delete the store. If the store is to an out of bounds address, it is undefined and thus also removable.
Reviewed By: nicholas
Differential Revision: http://reviews.llvm.org/D3942
llvm-svn: 214897
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.
So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64
Instead of generating something like this:
movabsq (constant pool loadi of mask for sign bits)
vmovq (move from integer register to vector/fp register)
vandps (mask off sign bits)
vmovq (move vector/fp register back to integer return register)
We should generate:
mov (put constant value in return register)
I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()
is the same thing as:
IntVT.isInteger()
Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.
For more background, please see:
http://reviews.llvm.org/D4770
And:
http://llvm.org/bugs/show_bug.cgi?id=20354
Differential Revision: http://reviews.llvm.org/D4785
llvm-svn: 214892
This is similar to what I did with the two-source permutation recently. (It's
almost too similar so that we should consider generating the masking variants
with some tablegen help.)
Both encoding and intrinsic tests are added as well. For the latter, this is
what the IR that the intrinsic test on the clang side generates.
Part of <rdar://problem/17688758>
llvm-svn: 214890
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214881
It's a bit of a tradeoff, since llvm-dwarfdump doesn't print the name of
the global symbol being used as an address in the addressing mode, but
this avoids the dependence on hardcoded set labels that keep changing
(5+ commits over the last few years that each update the set label as it
changes due to other, unrelated differences in output). This could've,
instead, been changed to match the set name then match the name in the
string pool but that would present other issues (needing to skip over
the sets that weren't of interest, etc) and checking that the addresses
(granted, without relocations applied - so it's not the whole story)
match in the two variable location descriptions seems sufficient and
fairly stable here.
There are a few similar other tests with similar label dependence that
I'll update soonish.
llvm-svn: 214878
Instruction prefetch is not implemented for AArch64, it is incorrectly
translated into data prefetch instruction.
Differential Revision: http://reviews.llvm.org/D4777
llvm-svn: 214860
Some types, such as 128-bit vector types on AArch64, don't have any callee-saved registers. So if a value needs to stay live over a callsite, it must be spilled and refilled. This cost is now taken into account.
llvm-svn: 214859
found by a single test reduced out of a failure on llvm-stress.
The start of the problem (and the crash) came when we tried to use
a find of a non-used slot in the move-to half of the move-mask as the
target for two bad-half inputs. While if lucky this will be the first of
a pair of slots which we can place the bad-half inputs into, it isn't
actually guaranteed. This really isn't surprising, not sure what I was
thinking. The correct way to find the two unused slots is to look for
one of the *used* slots. We know it isn't that pair, and we can use some
modular arithmetic to find the other pair by masking off the odd bit and
adding 2 modulo 4. With this, we reliably found a viable pair of slots
for the bad-half inputs.
Sadly, that wasn't enough. We also had a wrong code bug that surfaced
when I reduced the test case for this where we would use the same slot
twice for the two bad inputs. This is because both of the bad inputs
could be in odd slots originally and thus the mod-2 mapping would
actually be the same. The whole point of the weird indexing into the
pair of empty slots was to try to leverage when the end result needed
the two bad-half inputs to be paired in a dword and pre-pair them in the
correct orrientation. This is less important with the powerful combining
we're now doing, and also easier and more reliable to achieve be noting
that we add the bad-half inputs in order. Thus, if they are in a dword
pair, the low part of that will be the first input in the sequence.
Always putting that in the low element will just do the right thing in
addition to computing the correct result.
Test case added. =]
llvm-svn: 214849
This implements basic argument lowering for AArch64 in FastISel. It only
handles a small subset of the C calling convention. It supports simple
arguments that can be passed in GPR and FPR registers.
This should cover most of the trivial cases without falling back to
SelectionDAG.
This fixes <rdar://problem/17890986>.
llvm-svn: 214846
sequence on AArch64
Re-commit of r214669 without changes to test cases
LLVM::CodeGen/AArch64/arm64-neon-mul-div.ll and
LLVM:: CodeGen/AArch64/dp-3source.ll
This resolves the reported compfails of the original commit.
llvm-svn: 214832
My original LE implementation of the vsldoi instruction, with its
altivec.h interfaces vec_sld and vec_vsldoi, produces incorrect
shufflevector operations in the LLVM IR. Correct code is generated
because the back end handles the incorrect shufflevector in a
consistent manner.
This patch and a companion patch for Clang correct this problem by
removing the fixup from altivec.h and the corresponding fixup from the
PowerPC back end. Several test cases are also modified to reflect the
now-correct LLVM IR.
llvm-svn: 214800
Duplicate the vararg tests for linux and add a tests which mixed
vararg arguments with darwin positional parameters.
Patch by: Janne Grunau <j@jannau.net>
llvm-svn: 214799
This fix changes the parameters #r and #s that are passed to the UBFM/SBFM
instruction to get the zero/sign-extension for free.
The original problem was that the shift left would use the 32-bit shift even for
i8/i16 value types, which could leave the upper bits set with "garbage" values.
The arithmetic shift right on the other side would use the wrong MSB as sign-bit
to determine what bits to shift into the value.
This fixes <rdar://problem/17907720>.
llvm-svn: 214788
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.
It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.
llvm-svn: 214785
scalar integer instruction pass.
This is a patch I had lying around from a few months ago. The pass is
currently disabled by default, so nothing to interesting.
llvm-svn: 214779
When the last instruction prior to a function epilogue is a call, we
need to emit a nop so that the return address is not in the epilogue IP
range. This is consistent with MSVC's behavior, and may be a workaround
for a bug in the Win64 unwinder.
Differential Revision: http://reviews.llvm.org/D4751
Patch by Vadim Chugunov!
llvm-svn: 214775
In commit r213915, Bill fixed little-endian usage of vmrgh* and vmrgl*
by swapping the input arguments. As it turns out, the exact same fix
is also required for the vpkuhum/vpkuwum patterns.
This fixes another regression in llvmpipe when vector support is
enabled.
Reviewed by Bill Schmidt.
llvm-svn: 214718
I ran into some test failures where common code changed vector division
by constant into a multiply-high operation (MULHU). But these are not
implemented by the back-end, so we failed to recognize the insn.
Fixed by marking MULHU/MULHS as Expand for vector types.
llvm-svn: 214716