to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This functionality is required at multiple places which potentially
create large operand lists, like SelectionDAGBuilder or DAGCombiner.
Differential Revision: https://reviews.llvm.org/D56739
llvm-svn: 351552
Summary:
Use this helper to make sure we use the same value at various places.
This will likely be needed at more places were we currently crash
because we use more operands than possible.
Also makes it easier to change in the future.
Reviewers: RKSimon, craig.topper, efriedma, aemerson
Reviewed By: RKSimon
Subscribers: hiraditya, arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D56859
llvm-svn: 351537
The value returned by max() is the last valid value, adjust the
comparison accordingly.
The code added in D55073 creates TokenFactors with max() operands.
Reviewers: aemerson, efriedma, RKSimon, craig.topper
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D56738
llvm-svn: 351318
This adds support for calculating sign bits of insert_subvector. I based it on the computeKnownBits.
My motivating case is propagating sign bits information across basic blocks on AVX targets where concatenating using insert_subvector is common.
Differential Revision: https://reviews.llvm.org/D56283
llvm-svn: 350432
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
This is an alternative to what I attempted in D56057.
GetDemandedBits is a special version of SimplifyDemandedBits that allows simplifications even when the operand has other uses. GetDemandedBits will only do simplifications that allow a node to be bypassed. It won't create new nodes or alter any of the other users.
I had to add support for bypassing SIGN_EXTEND_INREG to GetDemandedBits.
Based on a patch that Simon Pilgrim sent me in email.
Fixes PR40142.
llvm-svn: 350059
Now that SimplifyDemandedBits/SimplifyDemandedVectorElts is simplifying vector elements, we're seeing more constant BUILD_VECTOR containing undefs.
This patch provides opt-in support for UNDEF elements in matchBinaryPredicate, passing NULL instead of the result ConstantSDNode* argument.
Differential Revision: https://reviews.llvm.org/D55822
llvm-svn: 349628
Now that SimplifyDemandedBits/SimplifyDemandedVectorElts are simplifying vector elements, we're seeing more constant BUILD_VECTOR containing UNDEFs.
This patch provides opt-in handling of UNDEF elements in matchUnaryPredicate, passing NULL instead of the ConstantSDNode* argument.
I've updated SelectionDAG::simplifyShift to demonstrate its use.
Differential Revision: https://reviews.llvm.org/D55819
llvm-svn: 349616
The assertion type is always supposed to be a scalar type. So if the result VT of the assertion is a vector, we need to get the scalar VT before we can compare them.
Similarly for the assert above it.
I don't have a test case because I don't know of any place we violate this today. A coworker found this while trying to use r347287 on the 6.0 branch without also having r336868
llvm-svn: 349390
Also exposes an issue in DAGCombiner::visitFunnelShift where we were assuming the shift amount had the result type (after legalization it'll have the targets shift amount type).
llvm-svn: 349298
Summary:
All targets either just return false here or properly model `Fast`, so I
don't think there is any reason to prevent CodeGen from doing the right
thing here.
Subscribers: nemanjai, javed.absar, eraman, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D55365
llvm-svn: 349016
This patch introduces a generic function to determine whether a given vector type is known to be a splat value for the specified demanded elements, recursing up the DAG looking for BUILD_VECTOR or VECTOR_SHUFFLE splat patterns.
It also keeps track of the elements that are known to be UNDEF - it returns true if all the demanded elements are UNDEF (as this may be useful under some circumstances), so this needs to be handled by the caller.
A wrapper variant is also provided that doesn't take the DemandedElts or UndefElts arguments for cases where we just want to know if the SDValue is a splat or not (with/without UNDEFS).
I had hoped to completely remove the X86 local version of this function, but I'm seeing some regressions in shift/rotate codegen that will take a little longer to fix and I hope to get this in sooner so I can continue work on PR38243 which needs more capable splat detection.
Differential Revision: https://reviews.llvm.org/D55426
llvm-svn: 348953
Summary:
All targets either just return false here or properly model `Fast`, so I
don't think there is any reason to prevent CodeGen from doing the right
thing here.
Subscribers: nemanjai, javed.absar, eraman, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D55365
llvm-svn: 348843
This is a fix for PR39896, where dbg.value's of SDNodes that have been
optimised out do not lead to "DBG_VALUE undef" instructions being created.
Such undef instructions are necessary to terminate earlier variable
ranges, otherwise variable values leak past the point where they're valid.
The "invalidated" flag of SDDbgValue is currently being abused to mean two
things:
* The corresponding SDNode is now invalid
* This SDDbgValue should not be emitted
Of which there are several legitimate combinations of meaning:
* The SDNode has been invalidated and we should emit "DBG_VALUE undef"
* The SDNode has been invalidated but the debug data was salvaged, don't
emit anything for this SDDbgValue
* This SDDbgValue has been emitted
This patch introduces distinct "Emitted" and "Invalidated" fields to the
SDDbgValue class, updates users accordingly, and generates "undef"
DBG_VALUEs for invalidated records. Awkwardly, there are circumstances
where we emit SDDbgValue's twice, specifically DebugInfo/X86/dbg-addr-dse.ll
which I've preserved.
Differential Revision: https://reviews.llvm.org/D55372
llvm-svn: 348751
These nodes should have two results. A real VT and a Glue. But this code would have returned Undef which would only be a single result. But we're in the single result version of getNode so these opcodes should never be seen by this function anyway.
llvm-svn: 348670
There's a 64k limit on the number of SDNode operands, and some very large
functions with 64k or more loads can cause crashes due to this limit being hit
when a TokenFactor with this many operands is created. To fix this, create
sub-tokenfactors if we've exceeded the limit.
No test case as it requires a very large function.
rdar://45196621
Differential Revision: https://reviews.llvm.org/D55073
llvm-svn: 348324
This makes the SDAG behavior consistent with the way we do this in IR.
It's possible that we were getting the wrong answer before. For example,
'xor undef, undef --> 0' but 'xor undef, C' --> undef.
But the most practical improvement is likely as shown in the tests here -
for FP, we were overconstraining undef lanes to NaN, and that can prevent
vector simplifications/narrowing (see D51553).
llvm-svn: 348090
rL347502 moved the null sibling, so we should group all of these
together. I'm not sure why these aren't methods of the SDValue
class itself, but that's another patch if that's possible.
llvm-svn: 347523
...and use them to avoid creating obviously undef values as
discussed in the post-commit thread for r347478.
The diffs in vector div/rem show that we were missing real
optimizations by creating bogus shift nodes.
llvm-svn: 347502
Sadly, this duplicates (twice) the logic from InstSimplify. There
might be some way to at least share the DAG versions of the code,
but copying the folds seems to be the standard method to ensure
that we don't miss these folds.
Unlike in IR, we don't run DAGCombiner to fixpoint, so there's no
way to ensure that we do these kinds of simplifications unless the
code is repeated at node creation time and during combines.
There were other tests that would become worthless with this
improvement that I changed as pre-commits:
rL347161
rL347164
rL347165
rL347166
rL347167
I'm not sure how to salvage the remaining tests (diffs in this patch).
So the x86 tests verify that the new code is working as intended.
The AMDGPU test is actually similar to my motivating case: we have
some undef value that has survived to machine IR in an x86 test, and
then it gets folded in some weird way, or we crash if we don't transfer
the undef flag. But we would have been better off never getting to that
point by doing these simplifications.
This will lead back to PR32023 someday...
https://bugs.llvm.org/show_bug.cgi?id=32023
llvm-svn: 347170
Previously, the extend_vector_inreg opcode required their input register to be the same total width as their output. But this doesn't match up with how the X86 instructions are defined. For X86 the input just needs to be a legal type with at least enough elements to cover the output.
This patch weakens the check on these nodes and allows them to be used as long as they have more input elements than output elements. I haven't changed type legalization behavior so it will still create them with matching input and output sizes.
X86 will custom legalize these nodes by shrinking the input to be a 128 bit vector and once we've done that we treat them as legal operations. We still have one case during type legalization where we must custom handle v64i8 on avx512f targets without avx512bw where v64i8 isn't a legal type. In this case we will custom type legalize to a *extend_vector_inreg with a v16i8 input. After that the input is a legal type so type legalization should ignore the node and doesn't need to know about the relaxed restriction. We are no longer allowed to use the default expansion for these nodes during vector op legalization since the default expansion uses a shuffle which required the widths to match. Custom legalization for all types will prevent us from reaching the default expansion code.
I believe DAG combine works correctly with the released restriction because it doesn't check the number of input elements.
The rest of the patch is changing X86 to use either the vector_inreg nodes or the regular zero_extend/sign_extend nodes. I had to add additional isel patterns to handle any_extend during isel since simplifydemandedbits can create them at any time so we can't legalize to zero_extend before isel. We don't yet create any_extend_vector_inreg in simplifydemandedbits.
Differential Revision: https://reviews.llvm.org/D54346
llvm-svn: 346784
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
Similar to FoldCONCAT_VECTORS, this patch adds FoldBUILD_VECTOR to simplify cases that can avoid the creation of the BUILD_VECTOR - if all the operands are UNDEF or if the BUILD_VECTOR simplifies to a copy.
This exposed an assumption in some AMDGPU code that getBuildVector was guaranteed to be a BUILD_VECTOR node that I've tried to handle.
Differential Revision: https://reviews.llvm.org/D53760
llvm-svn: 345578
The DAGTypeLegalizer::getSETCCWidenedResultTy was widening the MaskVT, but the code in convertMask called after getSETCCWidenedResultTy had no idea this widening had occurred. So none of the operands were widened when convertMask created new setccs with the widened VT.
This patch removes the widening and adds some asserts to getNode to validate the types of setccs to prevent issues like this in the future.
Differential Revision: https://reviews.llvm.org/D53743
llvm-svn: 345428
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
When implementing memset's today we often see this pattern:
$x0 = MOV 0xXYXYXYXYXYXYXYXY
store $x0, ...
$w1 = MOV 0xXYXYXYXY
store $w1, ...
We first create a 64bit constant in a 64bit register with all bytes the
same and then create a 32bit constant with all bytes the same in a 32bit
register. In many targets we could just access the lower byte of the
64bit register instead.
- Ideally this would be handled by the ConstantHoist pass but it runs
too early when memset isn't expanded yet.
- The memset expansion code already had this optimization implemented,
however SelectionDAG constantfolding would constantfold the
"trunc(bigconstnat)" pattern to "smallconstant".
- This patch makes the memset expansion mark the constant as Opaque and
stop DAGCombiner from constant folding in this situation. (Similar to
how ConstantHoisting marks things as Opaque to avoid folding
ADD/SUB/etc.)
Differential Revision: https://reviews.llvm.org/D53181
llvm-svn: 345102