ExprEngine.
Teach SimpleConstraintManager::assumeSymRel() to propagate constraints
to symbolic expressions.
+ One extra warning (real bug) is now generated due to enhanced
assumeSymRel().
llvm-svn: 145832
ConstraintManager::canReasonAbout() from the ExprEngine.
ExprEngine should not care if the constraint solver can reason about
something or not. The solver should be able to handle all the SymExprs.
To do this, the solver should be able to keep track of not only the
SymbolData but of all SymExprs. This is why we change SymbolRef to be an
alias of SymExpr*. When encountering an expression it cannot simplify,
the solver should just add the constraints to it.
llvm-svn: 145831
and CompleteTagDeclarationDefinition() on Objective-C
interfaces populated by SymbolFileSymtab::FindTypes(),
we should mark the interface as forward-declared when
we create it.
llvm-svn: 145825
to re-export anything that it imports. This opt-in feature makes a
module behave more like a header, because it can be used to re-export
the transitive closure of a (sub)module's dependencies.
llvm-svn: 145811
- Calling getUser in a loop is much more expensive than iterating over a few instructions.
- Use it instead of the open-coded loop in AddrModeMatcher.
- 5% speedup on ARMDisassembler.cpp Release builds.
llvm-svn: 145810
and fixes we did. Now that objective C classes are represented by symbols with
their own type, there were a few more places in the objective C code that needed
to be fixed when searching for dynamic types.
Cleaned up the objective C runtime plug-in a bit to not keep having to create
constant strings and make one less memory access when we find an "isa" in the
objective C cache.
llvm-svn: 145799
We forgot to include the unistd.h header file that defines the
functions mentioned above. This was not a problem with gnu C++ library,
however it did not work for libc++.
llvm-svn: 145790
add them to a fast lookup map. lldb_private::Symtab now export the following
public typedefs:
namespace lldb_private {
class Symtab {
typedef std::vector<uint32_t> IndexCollection;
typedef UniqueCStringMap<uint32_t> NameToIndexMap;
};
}
Clients can then find symbols by name and or type and end up with a
Symtab::IndexCollection that is filled with indexes. These indexes can then
be put into a name to index lookup map and control if the mangled and
demangled names get added to the map:
bool add_demangled = true;
bool add_mangled = true;
Symtab::NameToIndexMap name_to_index;
symtab->AppendSymbolNamesToMap (indexes, add_demangled, add_mangled, name_to_index).
This can be repeated as many times as needed to get a lookup table that
you are happy with, and then this can be sorted:
name_to_index.Sort();
Now name lookups can be done using a subset of the symbols you extracted from
the symbol table. This is currently being used to extract objective C types
from object files when there is no debug info in SymbolFileSymtab.
Cleaned up how the objective C types were being vended to be more efficient
and fixed some errors in the regular expression that was being used.
llvm-svn: 145777
Basically typo correction will try to offer a correction instead of looking into type dependent base classes.
I found this problem while parsing Microsoft ATL code with clang.
llvm-svn: 145772
-15% on ARMDisassembler.cpp (Release build). It's not that great to add another
layer of caching to the caching-heavy LVI but I don't see a better way.
llvm-svn: 145770