Commit Graph

5177 Commits

Author SHA1 Message Date
Rafael Espindola 83a362cde8 Change the .ll syntax for comdats and add a syntactic sugar.
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.

Just dropping the $name causes problems for

@foo = globabl i32 0, comdat
$bar = comdat ...

and

declare void @foo() comdat
$bar = comdat ...

So the syntax is changed to

@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat

and

declare void @foo() comdat($c1)
declare void @foo() comdat

llvm-svn: 225302
2015-01-06 22:55:16 +00:00
Sanjoy Das 7c0ce26614 This patch teaches IndVarSimplify to add nuw and nsw to certain kinds
of operations that provably don't overflow. For example, we can prove
%civ.inc below does not sign-overflow. With this change,
IndVarSimplify changes %civ.inc to an add nsw.

  define i32 @foo(i32* %array, i32* %length_ptr, i32 %init) {
   entry:
    %length = load i32* %length_ptr, !range !0
    %len.sub.1 = sub i32 %length, 1
    %upper = icmp slt i32 %init, %len.sub.1
    br i1 %upper, label %loop, label %exit
  
   loop:
    %civ = phi i32 [ %init, %entry ], [ %civ.inc, %latch ]
    %civ.inc = add i32 %civ, 1
    %cmp = icmp slt i32 %civ.inc, %length
    br i1 %cmp, label %latch, label %break
  
   latch:
    store i32 0, i32* %array
    %check = icmp slt i32 %civ.inc, %len.sub.1
    br i1 %check, label %loop, label %break
  
   break:
    ret i32 %civ.inc
  
   exit:
    ret i32 42
  }

Differential Revision: http://reviews.llvm.org/D6748

llvm-svn: 225282
2015-01-06 19:02:56 +00:00
Matt Arsenault 55e7312cd8 Convert fcmp with 0.0 from casted integers to icmp
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.

This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.

Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.

Also fold cases that aren't integers to true / false.

llvm-svn: 225265
2015-01-06 15:50:59 +00:00
David Majnemer 9b6b822814 InstCombine: Bitcast call arguments from/to pointer/integer type
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.

llvm-svn: 225254
2015-01-06 08:41:31 +00:00
Michael Kuperstein 6ae456b0d7 Fix broken test from r225159.
llvm-svn: 225164
2015-01-05 12:34:01 +00:00
Jiangning Liu 40c1b35292 Fixed a bug in memory dependence checking module of loop vectorization. The following loop should not be vectorized with current algorithm.
{code}
// loop body
   ... = a[i]          (1)
    ... = a[i+1]       (2)
 .......
a[i+1] = ....          (3)
   a[i] = ...          (4)
{code}

The algorithm tries to collect memory access candidates from AliasSetTracker, and then check memory dependences one another. The memory accesses are unique in AliasSetTracker, and a single memory access in AliasSetTracker may map to multiple entries in AccessAnalysis, which could cover both 'read' and 'write'. Originally the algorithm only checked 'write' entry in Accesses if only 'write' exists. This is incorrect and the consequence is it ignored all read access, and finally some RAW and WAR dependence are missed.

For the case given above, if we ignore two reads, the dependence between (1) and (3) would not be able to be captured, and finally this loop will be incorrectly vectorized.

The fix simply inserts a new loop to find all entries in Accesses. Since it will skip most of all other memory accesses by checking the Value pointer at the very beginning of the loop, it should not increase compile-time visibly.

llvm-svn: 225159
2015-01-05 10:08:58 +00:00
Chandler Carruth 73b0164fe5 [SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an
assert out of the new pre-splitting in SROA.

This fix makes the code do what was originally intended -- when we have
a store of a load both dealing in the same alloca, we force them to both
be pre-split with identical offsets. This is really quite hard to do
because we can keep discovering problems as we go along. We have to
track every load over the current alloca which for any resaon becomes
invalid for pre-splitting, and go back to remove all stores of those
loads. I've included a couple of test cases derived from PR22093 that
cover the different ways this can happen. While that PR only really
triggered the first of these two, its the same fundamental issue.

The other challenge here is documented in a FIXME now. We end up being
quite a bit more aggressive for pre-splitting when loads and stores
don't refer to the same alloca. This aggressiveness comes at the cost of
introducing potentially redundant loads. It isn't clear that this is the
right balance. It might be considerably better to require that we only
do pre-splitting when we can presplit every load and store involved in
the entire operation. That would give more consistent if conservative
results. Unfortunately, it requires a non-trivial change to the actual
pre-splitting operation in order to correctly handle cases where we end
up pre-splitting stores out-of-order. And it isn't 100% clear that this
is the right direction, although I'm starting to suspect that it is.

llvm-svn: 225149
2015-01-05 04:17:53 +00:00
David Majnemer 087dc8b831 InstCombine: match can find ConstantExprs, don't assume we have a Value
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>.  Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.

This fixes PR22087.

llvm-svn: 225127
2015-01-04 07:36:02 +00:00
David Majnemer 6ee8d17bc6 ValueTracking: ComputeNumSignBits should tolerate misshapen phi nodes
PHI nodes can have zero operands in the middle of a transform.  It is
expected that utilities in Analysis don't freak out when this happens.

Note that it is considered invalid to allow these misshapen phi nodes to
make it to another pass.

This fixes PR22086.

llvm-svn: 225126
2015-01-04 07:06:53 +00:00
David Majnemer c8a576b5c0 InstCombine: Detect when llvm.umul.with.overflow always overflows
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.

llvm-svn: 225077
2015-01-02 07:29:47 +00:00
Chandler Carruth 24ac830d7c [SROA] Teach SROA to be more aggressive in splitting now that we have
a pre-splitting pass over loads and stores.

Historically, splitting could cause enough problems that I hamstrung the
entire process with a requirement that splittable integer loads and
stores must cover the entire alloca. All smaller loads and stores were
unsplittable to prevent chaos from ensuing. With the new pre-splitting
logic that does load/store pair splitting I introduced in r225061, we
can now very nicely handle arbitrarily splittable loads and stores. In
order to fully benefit from these smarts, we need to mark all of the
integer loads and stores as splittable.

However, we don't actually want to rewrite partitions with all integer
loads and stores marked as splittable. This will fail to extract scalar
integers from aggregates, which is kind of the point of SROA. =] In
order to resolve this, what we really want to do is only do
pre-splitting on the alloca slices with integer loads and stores fully
splittable. This allows us to uncover all non-integer uses of the alloca
that would benefit from a split in an integer load or store (and where
introducing the split is safe because it is just memory transfer from
a load to a store). Once done, we make all the non-whole-alloca integer
loads and stores unsplittable just as they have historically been,
repartition and rewrite.

The result is that when there are integer loads and stores anywhere
within an alloca (such as from a memcpy of a sub-object of a larger
object), we can split them up if there are non-integer components to the
aggregate hiding beneath. I've added the challenging test cases to
demonstrate how this is able to promote to scalars even a case where we
have even *partially* overlapping loads and stores.

This restores the single-store behavior for small arrays of i8s which is
really nice. I've restored both the little endian testing and big endian
testing for these exactly as they were prior to r225061. It also forced
me to be more aggressive in an alignment test to actually defeat SROA.
=] Without the added volatiles there, we actually split up the weird i16
loads and produce nice double allocas with better alignment.

This also uncovered a number of bugs where we failed to handle
splittable load and store slices which didn't have a begininng offset of
zero. Those fixes are included, and without them the existing test cases
explode in glorious fireworks. =]

I've kept support for leaving whole-alloca integer loads and stores as
splittable even for the purpose of rewriting, but I think that's likely
no longer needed. With the new pre-splitting, we might be able to remove
all the splitting support for loads and stores from the rewriter. Not
doing that in this patch to try to isolate any performance regressions
that causes in an easy to find and revert chunk.

llvm-svn: 225074
2015-01-02 03:55:54 +00:00
Chandler Carruth e65ae89327 [SROA] Add a test case for r225068 / PR22080.
llvm-svn: 225070
2015-01-02 00:34:29 +00:00
Chandler Carruth 0715cba02d [SROA] Teach SROA how to much more intelligently handle split loads and
stores.

When there are accesses to an entire alloca with an integer
load or store as well as accesses to small pieces of the alloca, SROA
splits up the large integer accesses. In order to do that, it uses bit
math to merge the small accesses into large integers. While this is
effective, it produces insane IR that can cause significant problems in
the rest of the optimizer:

- It can cause load and store mismatches with GVN on the non-alloca side
  where we end up loading an i64 (or some such) rather than loading
  specific elements that are stored.
- We can't always get rid of the integer bit math, which is why we can't
  always fix the loads and stores to work well with GVN.
- This is especially bad when we have operations that mix poorly with
  integer bit math such as floating point operations.
- It will block things like the vectorizer which might be able to handle
  the scalar stores that underly the aggregate.

At the same time, we can't just directly split up these loads and stores
in all cases. If there is actual integer arithmetic involved on the
values, then using integer bit math is actually the perfect lowering
because we can often combine it heavily with the surrounding math.

The solution this patch provides is to find places where SROA is
partitioning aggregates into small elements, and look for splittable
loads and stores that it can split all the way to some other adjacent
load and store. These are uniformly the cases where failing to split the
loads and stores hurts the optimizer that I have seen, and I've looked
extensively at the code produced both from more and less aggressive
approaches to this problem.

However, it is quite tricky to actually do this in SROA. We may have
loads and stores to the same alloca, or other complex patterns that are
hard to handle. This complexity leads to the somewhat subtle algorithm
implemented here. We have to do this entire process as a separate pass
over the partitioning of the alloca, and split up all of the loads prior
to splitting the stores so that we can handle safely the cases of
overlapping, including partially overlapping, loads and stores to the
same alloca. We also have to reconstitute the post-split slice
configuration so we can avoid iterating again over all the alloca uses
(the slow part of SROA). But we also have to ensure that when we split
up loads and stores to *other* allocas, we *do* re-iterate over them in
SROA to adapt to the more refined partitioning now required.

With this, I actually think we can fix a long-standing TODO in SROA
where I avoided splitting as many loads and stores as probably should be
splittable. This limitation historically mitigated the fallout of all
the bad things mentioned above. Now that we have more intelligent
handling, I plan to remove the FIXME and more aggressively mark integer
loads and stores as splittable. I'll do that in a follow-up patch to
help with bisecting any fallout.

The net result of this change should be more fine-grained and accurate
scalars being formed out of aggregates. At the very least, Clang now
generates perfect code for this high-level test case using
std::complex<float>:

  #include <complex>

  void g1(std::complex<float> &x, float a, float b) {
    x += std::complex<float>(a, b);
  }
  void g2(std::complex<float> &x, float a, float b) {
    x -= std::complex<float>(a, b);
  }

  void foo(const std::complex<float> &x, float a, float b,
           std::complex<float> &x1, std::complex<float> &x2) {
    std::complex<float> l1 = x;
    g1(l1, a, b);
    std::complex<float> l2 = x;
    g2(l2, a, b);
    x1 = l1;
    x2 = l2;
  }

This code isn't just hypothetical either. It was reduced out of the hot
inner loops of essentially every part of the Eigen math library when
using std::complex<float>. Those loops would consistently and
pervasively hop between the floating point unit and the integer unit due
to bit math extraction and insertion of floating point values that were
"stored" in a 64-bit integer register around the loop backedge.

So far, this change has passed a bootstrap and I have done some other
testing and so far, no issues. That doesn't mean there won't be though,
so I'll be prepared to help with any fallout. If you performance swings
in particular, please let me know. I'm very curious what all the impact
of this change will be. Stay tuned for the follow-up to also split more
integer loads and stores.

llvm-svn: 225061
2015-01-01 11:54:38 +00:00
Sanjay Patel e68f71574f InstCombine: fsub nsz 0, X ==> fsub nsz -0.0, X
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).

This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.

Differential Revision: http://reviews.llvm.org/D6731

llvm-svn: 225050
2014-12-31 22:14:05 +00:00
David Majnemer f89dc3edc9 InstCombine: try to transform A-B < 0 into A < B
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.

llvm-svn: 225034
2014-12-31 04:21:41 +00:00
Philip Reames 9db26ffc9a Carry facts about nullness and undef across GC relocation
This change implements four basic optimizations:

    If a relocated value isn't used, it doesn't need to be relocated.
    If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
    If the value being relocated is undef, the relocation is meaningless.
    If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)

I outlined other planned work in comments.

Differential Revision: http://reviews.llvm.org/D6600

llvm-svn: 224968
2014-12-29 23:27:30 +00:00
Philip Reames b35f46ce06 Refine the notion of MayThrow in LICM to include a header specific version
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.

This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.

define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
  br label %loop
loop: ; preds = %entry, %for.inc
  %div = udiv i64 %x, %y
  br i1 %cond, label %loop-if, label %exit
loop-if:
  call void @use(i64 %div)
  br label %loop
exit:
  ret void
}

The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load.  The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.

Differential Revision: http://reviews.llvm.org/D6725

llvm-svn: 224965
2014-12-29 23:00:57 +00:00
Philip Reames 5ad26c353c Loading from null is valid outside of addrspace 0
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen.  This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.

We really should introduce a hook to control this property on a per target per address space basis.  We may be loosing valuable optimizations in some address spaces by being too conservative.

Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.

llvm-svn: 224961
2014-12-29 22:46:21 +00:00
David Majnemer b1296ec0fd InstCombine: Infer nuw for multiplies
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.

llvm-svn: 224849
2014-12-26 09:50:35 +00:00
David Majnemer 54c2ca2539 InstCombe: Infer nsw for multiplies
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.

llvm-svn: 224847
2014-12-26 09:10:14 +00:00
Michael Kuperstein be8032c875 [ValueTracking] Move GlobalAlias handling to be after the max depth check in computeKnownBits()
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation. 

This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.

Differential Revision: http://reviews.llvm.org/D6758

llvm-svn: 224765
2014-12-23 11:33:41 +00:00
Michael Liao 5313da3263 [SimplifyCFG] Revise common code sinking
- Fix the case where more than 1 common instructions derived from the same
  operand cannot be sunk. When a pair of value has more than 1 derived values
  in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
  map of (BB1, BB2) -> PN, which is more accurate to track common ops.

llvm-svn: 224757
2014-12-23 08:26:55 +00:00
Bruno Cardoso Lopes bad65c3b70 [LCSSA] Handle PHI insertion in disjoint loops
Take two disjoint Loops L1 and L2.

LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.

This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.

Differential Revision: http://reviews.llvm.org/D6624

rdar://problem/19166231

llvm-svn: 224740
2014-12-22 22:35:46 +00:00
David Majnemer 6eed0e0d20 This should have been part of r224676.
llvm-svn: 224677
2014-12-20 04:48:34 +00:00
David Majnemer b0362e4ee6 InstCombine: Squash an icmp+select into bitwise arithmetic
(X & INT_MIN) == 0 ? X ^ INT_MIN : X  into  X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X  into  X & INT_MAX

This fixes PR21993.

llvm-svn: 224676
2014-12-20 04:45:35 +00:00
David Majnemer 0b6a0b0257 InstSimplify: Optimize away pointless comparisons
(X & INT_MIN) ? X & INT_MAX : X  into  X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX  into  X
(X & INT_MIN) ? X | INT_MIN : X  into  X
(X & INT_MIN) ? X : X | INT_MIN  into  X | INT_MIN

llvm-svn: 224669
2014-12-20 03:04:38 +00:00
Bruno Cardoso Lopes f6cf8ad4e5 Reapply: [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.

This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

llvm-svn: 224588
2014-12-19 17:12:35 +00:00
Sanjay Patel ea3c802887 use -0.0 when creating an fneg instruction
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:

   lis r2, ha16(LCPI0_0)
   lfs f0, lo16(LCPI0_0)(r2)
   fsubs f1, f0, f1
   blr

vs. -0.0:

   fneg f1, f1
   blr

Differential Revision: http://reviews.llvm.org/D6723

llvm-svn: 224583
2014-12-19 16:44:08 +00:00
Bruno Cardoso Lopes 3be15b2fa6 Revert "[InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr"
Reverts commit r224574 to appease buildbots:

The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

llvm-svn: 224576
2014-12-19 14:36:24 +00:00
Bruno Cardoso Lopes c9005f2f2b [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

llvm-svn: 224574
2014-12-19 14:23:15 +00:00
David Majnemer 824e011ad7 ConstantFold: Shifting undef by zero results in undef
llvm-svn: 224553
2014-12-18 23:54:43 +00:00
Suyog Sarda 43fae93da8 Revert 224119 "This patch recognizes (+ (+ v0, v1) (+ v2, v3)), reorders them for bundling into vector of loads,
and vectorizes it." 

This was re-ordering floating point data types resulting in mismatch in output.

llvm-svn: 224424
2014-12-17 10:34:27 +00:00
Elena Demikhovsky 028e966a54 Added 5 more tests related to sink store revision 224247
- by Ella Bolshinsky

http://reviews.llvm.org/D6420

llvm-svn: 224418
2014-12-17 08:12:59 +00:00
Erik Eckstein a451b9b0b5 Strength reduce intrinsics with overflow into regular arithmetic operations if possible.
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.

llvm-svn: 224417
2014-12-17 07:29:19 +00:00
David Majnemer 65c52ae8ca InstSimplify: shl nsw/nuw undef, %V -> undef
We can always choose an value for undef which might cause %V to shift
out an important bit except for one case, when %V is zero.

However, shl behaves like an identity function when the right hand side
is zero.

llvm-svn: 224405
2014-12-17 01:54:33 +00:00
Elena Demikhovsky f5b72afff4 Masked Load and Store Intrinsics in loop vectorizer.
The loop vectorizer optimizes loops containing conditional memory
accesses by generating masked load and store intrinsics.
This decision is target dependent.

http://reviews.llvm.org/D6527

llvm-svn: 224334
2014-12-16 11:50:42 +00:00
Sanjoy Das 4555b6d870 Teach ScalarEvolution to exploit min and max expressions when proving
isKnownPredicate.

The motivation for this change is to optimize away checks in loops
like this:

    limit = min(t, len)
    for (i = 0 to limit)
      if (i >= len || i < 0) throw_array_of_of_bounds();
      a[i] = ...

Differential Revision: http://reviews.llvm.org/D6635

llvm-svn: 224285
2014-12-15 22:50:15 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Elena Demikhovsky bf74736290 Added a test related to 224247 revision
llvm-svn: 224248
2014-12-15 14:14:10 +00:00
Suyog Sarda 2b27fc78a2 Typo Correction in Test Case. NFC.
llvm-svn: 224244
2014-12-15 12:19:46 +00:00
Ahmed Bougacha 0cb861634b Reapply "[ARM] Combine base-updating/post-incrementing vector load/stores."
r223862 tried to also combine base-updating load/stores.
r224198 reverted it, as "it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown."
Reapply, with a fix to ignore non-normal load/stores.
Truncstores are handled elsewhere (you can actually write a pattern for
those, whereas for postinc loads you can't, since they return two values),
but it should be possible to also combine extloads base updates, by checking
that the memory (rather than result) type is of the same size as the addend.

Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585

llvm-svn: 224203
2014-12-13 23:22:12 +00:00
Renato Golin df8f9b6dc9 Revert "[ARM] Combine base-updating/post-incrementing vector load/stores."
This reverts commit r223862, as it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown. We'll investigate the issue and re-apply
when safe.

llvm-svn: 224198
2014-12-13 20:23:18 +00:00
David Majnemer 9b6097586c ValueTracking: Don't recurse too deeply in computeKnownBitsFromAssume
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.

This fixes PR21891.

llvm-svn: 224168
2014-12-12 23:59:29 +00:00
Suyog Sarda 384095e65c This patch recognizes (+ (+ v0, v1) (+ v2, v3)), reorders them for bundling into vector of loads,
and vectorizes it. 
 
 Test case :
 
       float hadd(float* a) {
           return (a[0] + a[1]) + (a[2] + a[3]);
        }
 
 
 AArch64 assembly before patch :
 
        ldp	s0, s1, [x0]
 	ldp	s2, s3, [x0, #8]
 	fadd	s0, s0, s1
 	fadd	s1, s2, s3
 	fadd	s0, s0, s1
 	ret
 
 AArch64 assembly after patch :
 
        ldp	d0, d1, [x0]
 	fadd	v0.2s, v0.2s, v1.2s
 	faddp	s0, v0.2s
 	ret

Reviewed Link : http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20141208/248531.html

llvm-svn: 224119
2014-12-12 12:53:44 +00:00
Steven Wu 881916dea5 Fix another infinite loop in InstCombine
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6634

llvm-svn: 224097
2014-12-12 04:34:07 +00:00
Andrea Di Biagio 72b05aa59c [InstCombine][X86] Improved folding of calls to Intrinsic::x86_sse4a_insertqi.
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.

From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
   results are undefined;
2. A value of zero in the field length is defined as a length of 64.

This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.

Differential Revision: http://reviews.llvm.org/D6583

llvm-svn: 224054
2014-12-11 20:44:59 +00:00
David Majnemer f532fcb889 InstSimplify: Remove usesless %a parameter from tests
No functional change intended.

llvm-svn: 224016
2014-12-11 12:56:17 +00:00
Michael Kuperstein fffb6996c9 The inliner needs to fix up debug information for llvm.dbg.declare, not only for llvm.dbg.value.
Patch by Amjad Aboud

Differential Revision: http://reviews.llvm.org/D6525

llvm-svn: 224015
2014-12-11 12:41:10 +00:00
David Majnemer 5a7717e498 ConstantFold, InstSimplify: undef >>a x can be either -1 or 0, choose 0
Zero is usually a nicer constant to have than -1.

llvm-svn: 223969
2014-12-10 21:58:15 +00:00
David Majnemer 89cf6d79eb ConstantFold: an undef shift amount results in undef
X shifted by undef results in undef because the undef value can
represent values greater than the width of the operands.

llvm-svn: 223968
2014-12-10 21:38:05 +00:00
David Majnemer 7b86b77248 ConstantFold: div undef, 0 should fold to undef, not zero
Dividing by zero yields an undefined value.

llvm-svn: 223924
2014-12-10 09:14:55 +00:00
David Majnemer ae707582c0 InstSimplify: [al]shr exact undef, %X -> undef
Exact shifts always keep the non-zero bits of their input.  This means
it keeps it's undef bits.

llvm-svn: 223923
2014-12-10 09:14:52 +00:00
David Majnemer 71dc8fb867 InstSimplify: div %X, 0 -> undef
We already optimized rem %X, 0 to undef, we should do the same for div.

llvm-svn: 223919
2014-12-10 07:52:18 +00:00
Ahmed Bougacha 7efbac74ec [ARM] Combine base-updating/post-incrementing vector load/stores.
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585

llvm-svn: 223862
2014-12-10 00:07:37 +00:00
Chandler Carruth a7f247ea56 Revert r223764 which taught instcombine about integer-based elment extraction
patterns.

This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.

This reverts commit r223764.

Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

llvm-svn: 223813
2014-12-09 19:21:16 +00:00
Duncan P. N. Exon Smith 5bf8fef580 IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532.  Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.

I have a follow-up patch prepared for `clang`.  If this breaks other
sub-projects, I apologize in advance :(.  Help me compile it on Darwin
I'll try to fix it.  FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.

This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.

Here's a quick guide for updating your code:

  - `Metadata` is the root of a class hierarchy with three main classes:
    `MDNode`, `MDString`, and `ValueAsMetadata`.  It is distinct from
    the `Value` class hierarchy.  It is typeless -- i.e., instances do
    *not* have a `Type`.

  - `MDNode`'s operands are all `Metadata *` (instead of `Value *`).

  - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
    replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.

    If you're referring solely to resolved `MDNode`s -- post graph
    construction -- just use `MDNode*`.

  - `MDNode` (and the rest of `Metadata`) have only limited support for
    `replaceAllUsesWith()`.

    As long as an `MDNode` is pointing at a forward declaration -- the
    result of `MDNode::getTemporary()` -- it maintains a side map of its
    uses and can RAUW itself.  Once the forward declarations are fully
    resolved RAUW support is dropped on the ground.  This means that
    uniquing collisions on changing operands cause nodes to become
    "distinct".  (This already happened fairly commonly, whenever an
    operand went to null.)

    If you're constructing complex (non self-reference) `MDNode` cycles,
    you need to call `MDNode::resolveCycles()` on each node (or on a
    top-level node that somehow references all of the nodes).  Also,
    don't do that.  Metadata cycles (and the RAUW machinery needed to
    construct them) are expensive.

  - An `MDNode` can only refer to a `Constant` through a bridge called
    `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).

    As a side effect, accessing an operand of an `MDNode` that is known
    to be, e.g., `ConstantInt`, takes three steps: first, cast from
    `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
    third, cast down to `ConstantInt`.

    The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
    metadata schema owners transition away from using `Constant`s when
    the type isn't important (and they don't care about referring to
    `GlobalValue`s).

    In the meantime, I've added transitional API to the `mdconst`
    namespace that matches semantics with the old code, in order to
    avoid adding the error-prone three-step equivalent to every call
    site.  If your old code was:

        MDNode *N = foo();
        bar(isa             <ConstantInt>(N->getOperand(0)));
        baz(cast            <ConstantInt>(N->getOperand(1)));
        bak(cast_or_null    <ConstantInt>(N->getOperand(2)));
        bat(dyn_cast        <ConstantInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));

    you can trivially match its semantics with:

        MDNode *N = foo();
        bar(mdconst::hasa               <ConstantInt>(N->getOperand(0)));
        baz(mdconst::extract            <ConstantInt>(N->getOperand(1)));
        bak(mdconst::extract_or_null    <ConstantInt>(N->getOperand(2)));
        bat(mdconst::dyn_extract        <ConstantInt>(N->getOperand(3)));
        bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));

    and when you transition your metadata schema to `MDInt`:

        MDNode *N = foo();
        bar(isa             <MDInt>(N->getOperand(0)));
        baz(cast            <MDInt>(N->getOperand(1)));
        bak(cast_or_null    <MDInt>(N->getOperand(2)));
        bat(dyn_cast        <MDInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));

  - A `CallInst` -- specifically, intrinsic instructions -- can refer to
    metadata through a bridge called `MetadataAsValue`.  This is a
    subclass of `Value` where `getType()->isMetadataTy()`.

    `MetadataAsValue` is the *only* class that can legally refer to a
    `LocalAsMetadata`, which is a bridged form of non-`Constant` values
    like `Argument` and `Instruction`.  It can also refer to any other
    `Metadata` subclass.

(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)

llvm-svn: 223802
2014-12-09 18:38:53 +00:00
Sonam Kumari 72ccc3c428 Removal Of Duplicate Test Cases and Addition Of Missing Check Statements
llvm-svn: 223768
2014-12-09 10:46:38 +00:00
Ankur Garg 51eeba70da [test/Transforms/InstCombine/shift.ll] Removed duplicate test cases. NFC.
Removed some duplicate test cases from the file /test/Transforms/InstCombine/shift.ll.

test54 and test57 were duplicates of each other.
test55 and test58 were duplicates of each other.

(Removed test57 and test58)

llvm-svn: 223767
2014-12-09 10:35:19 +00:00
Chandler Carruth 7415205113 Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

Differential Revision: http://reviews.llvm.org/D6548

llvm-svn: 223764
2014-12-09 08:55:32 +00:00
David Majnemer d5b3aa49ac InstSimplify: Try to bring back the rest of r223583
This reverts r223624 with a small tweak, hopefully this will make stage3
equivalent.

llvm-svn: 223679
2014-12-08 18:30:43 +00:00
Sonam Kumari 90d266c0a9 Removal Of Duplicate Test Case from shift.ll file
llvm-svn: 223648
2014-12-08 09:40:43 +00:00
NAKAMURA Takumi 2b6e662672 Revert a part of r223583, for now. It seems causing different emission between stage2(gcc-clang) and stage3 clang. Investigating.
llvm-svn: 223624
2014-12-08 02:07:22 +00:00
David Majnemer 1af36e5baf InstSimplify: Optimize away useless unsigned comparisons
Code like X < Y && Y == 0 should always be folded away to false.

llvm-svn: 223583
2014-12-06 10:51:40 +00:00
Duncan P. N. Exon Smith da41af9e94 IR: Disallow complicated function-local metadata
Disallow complex types of function-local metadata.  The only valid
function-local metadata is an `MDNode` whose sole argument is a
non-metadata function-local value.

Part of PR21532.

llvm-svn: 223564
2014-12-06 01:26:49 +00:00
Hans Wennborg 67ead59108 Add some tests for SimplifyCFG's TurnSwitchRangeIntoICmp(). NFC.
llvm-svn: 223396
2014-12-04 22:19:28 +00:00
Hans Wennborg 1096539335 Add some tests for SimplifyCFG's ConstantFoldTerminator(). NFC.
llvm-svn: 223395
2014-12-04 22:19:25 +00:00
Philip Reames 5b3ce71b62 Add a test case for argument type coercion in an invoke of a vararg function
This would have caught the bug I fixed in 223370.  

llvm-svn: 223378
2014-12-04 19:13:45 +00:00
Hal Finkel aa19bafc9c Revert "r223364 - Revert r223347 which has caused crashes on bootstrap bots."
Reapply r223347, with a fix to not crash on uninserted instructions (or more
precisely, instructions in uninserted blocks). bugpoint was able to reduce the
test case somewhat, but it is still somewhat large (and relies on setting
things up to be simplified during inlining), so I've not included it here.
Nevertheless, it is clear what is going on and why.

Original commit message:

Restrict somewhat the memory-allocation pointer cmp opt from r223093

Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.

llvm-svn: 223371
2014-12-04 17:45:19 +00:00
Alexander Potapenko 76770e4930 Revert r223347 which has caused crashes on bootstrap bots.
llvm-svn: 223364
2014-12-04 14:22:27 +00:00
Simon Pilgrim be24ab367b [InstCombine] Minor optimization for bswap with binary ops
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:

OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )

Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:

fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))

Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.

Differential Revision: http://reviews.llvm.org/D6407

llvm-svn: 223349
2014-12-04 09:44:01 +00:00
Hal Finkel 8b24b32c44 Restrict somewhat the memory-allocation pointer cmp opt from r223093
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.

llvm-svn: 223347
2014-12-04 09:22:28 +00:00
Matthias Braun d34e4d2354 [SimplifyLibCalls] Improve double->float shrinking to consider constants
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);

rdar://19049359

Differential Revision: http://reviews.llvm.org/D6496

llvm-svn: 223270
2014-12-03 21:46:33 +00:00
Matthias Braun 892c923c46 [SimplifyLibCalls] Enable double to float shrinking for copysign
rdar://19049359

Differential Revision: http://reviews.llvm.org/D6495

llvm-svn: 223269
2014-12-03 21:46:29 +00:00
Nick Lewycky 8ede1ef09b Fix test to use the right metadata node (reapply r223239 plus a fix) and also to use the correct path to the GCNO file.
llvm-svn: 223244
2014-12-03 17:32:44 +00:00
Alexander Potapenko ff5326f0d1 Revert r223239, which broke some bots.
llvm-svn: 223240
2014-12-03 16:03:08 +00:00
Alexander Potapenko 1b42ad9b43 Fix the metadata number used by llvm.gcov to match the number of the inserted metadata node.
llvm-svn: 223239
2014-12-03 15:15:58 +00:00
Erik Eckstein d181752be0 InstCombine: simplify signed range checks
Try to convert two compares of a signed range check into a single unsigned compare.
Examples:
(icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
(icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n

llvm-svn: 223224
2014-12-03 10:39:15 +00:00
Tom Stellard 1f0dded057 StructurizeCFG: Use LoopInfo analysis for better loop detection
We were assuming that each back-edge in a region represented a unique
loop, which is not always the case.  We need to use LoopInfo to
correctly determine which back-edges are loops.

llvm-svn: 223199
2014-12-03 04:28:32 +00:00
Nick Lewycky 2e8a6219fc Emit the entry block first and the exit block second, then all the blocks in between afterwards. This is what gcc always does, and some out of tree tools depend on that.
llvm-svn: 223193
2014-12-03 02:45:01 +00:00
Michael Zolotukhin ea8327b80f PR21302. Vectorize only bottom-tested loops.
rdar://problem/18886083

llvm-svn: 223171
2014-12-02 22:59:06 +00:00
Michael Zolotukhin 540580ca06 Apply loop-rotate to several vectorizer tests.
Such loops shouldn't be vectorized due to the loops form.
After applying loop-rotate (+simplifycfg) the tests again start to check
what they are intended to check.

llvm-svn: 223170
2014-12-02 22:59:02 +00:00
Bruno Cardoso Lopes 15520db9ad [SwitchLowering] Handle destinations on multiple phi instructions
Follow up from r222926. Also handle multiple destinations from merged
cases on multiple and subsequent phi instructions.

rdar://problem/19106978

llvm-svn: 223135
2014-12-02 18:31:53 +00:00
Bruno Cardoso Lopes d035fbb96f [LICM] Avoind store sinking if no preheader is available
Load instructions are inserted into loop preheaders when sinking stores
and later removed if not used by the SSA updater. Avoid sinking if the
loop has no preheader and avoid crashes. This fixes one more side effect
of not handling indirectbr instructions properly on LoopSimplify.

llvm-svn: 223119
2014-12-02 14:22:34 +00:00
Sonam Kumari f2eacabd66 [signext.ll] Removal Of Duplicate Test Cases
Removed the duplicate test case existing in signext.ll file.

llvm-svn: 223109
2014-12-02 05:29:47 +00:00
Hal Finkel afcd8dbbcf Simplify pointer comparisons involving memory allocation functions
System memory allocation functions, which are identified at the IR level by the
noalias attribute on the return value, must return a pointer into a memory region
disjoint from any other memory accessible to the caller. We can use this
property to simplify pointer comparisons between allocated memory and local
stack addresses and the addresses of global variables. Neither the stack nor
global variables can overlap with the region used by the memory allocator.

Fixes PR21556.

llvm-svn: 223093
2014-12-01 23:38:06 +00:00
Reid Kleckner 35fc363ce8 Parse 'ghccc' in .ll files as the GHC convention (cc 10)
Previously we just used "cc 10" in the .ll files, but that isn't very
human readable.

llvm-svn: 223076
2014-12-01 21:04:44 +00:00
Hans Wennborg 5bef5b522b Revert r223049, r223050 and r223051 while investigating test failures.
I didn't foresee affecting the Clang test suite :/

llvm-svn: 223054
2014-12-01 17:36:43 +00:00
Hans Wennborg 269ebb612e SimplifyCFG: Omit range checks for switch lookup tables when default is unreachable
They would get optimized away later, but we might as well not emit them.

llvm-svn: 223051
2014-12-01 17:08:38 +00:00
Hans Wennborg 5a1e5c05d8 SimplifyCFG: don't remove unreachable default switch destinations
An unreachable default destination can be exploited by other optimizations, and
SDag lowering is now prepared to handle them efficiently.

For example, branches to the unreachable destination will be optimized away,
such as in the case of range checks for switch lookup tables.

On 64-bit Linux, this reduces the size of a clang bootstrap by 80 kB (and
Chromium by 30 kB).

llvm-svn: 223050
2014-12-01 17:08:35 +00:00
Sonam Kumari 237cfa9916 Removed extra whitespace. (Testing commit access). NFC.
llvm-svn: 222994
2014-12-01 09:27:46 +00:00
Rafael Espindola a4b2ee4548 Relax an assert a bit to avoid a crash on unreachable code.
Patch by Duncan Exon Smith with a small tweak by me.

llvm-svn: 222984
2014-12-01 02:55:24 +00:00
Duncan P. N. Exon Smith 910f05d181 DebugIR: Delete -debug-ir
llvm-svn: 222945
2014-11-29 03:15:47 +00:00
Duncan P. N. Exon Smith 9bc81fbe92 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

llvm-svn: 222936
2014-11-28 21:29:14 +00:00
David Majnemer 3d6f80b619 InstCombine: FoldOrOfICmps harder
We may be in a situation where the icmps might not be near each other in
a tree of or instructions.  Try to dig out related compare instructions
and see if they combine.

N.B.  This won't fire on deep trees of compares because rewritting the
tree might end up creating a net increase of IR.  We may have to resort
to something more sophisticated if this is a real problem.

llvm-svn: 222928
2014-11-28 19:58:29 +00:00
Bruno Cardoso Lopes 46d5bf2982 [LICM] Store sink and indirectbr instructions
Loop simplify skips exit-block insertion when exits contain indirectbr
instructions. This leads to an assertion in LICM when trying to sink
stores out of non-dedicated loop exits containing indirectbr
instructions. This patch fix this issue by re-checking for dedicated
exits in LICM prior to store sink attempts.

Differential Revision: http://reviews.llvm.org/D6414

rdar://problem/18943047

llvm-svn: 222927
2014-11-28 19:47:46 +00:00
Bruno Cardoso Lopes bc7ba2c766 [SwitchLowering] Handle multiple destinations on condensed case stmts
Switch cases statements with sequential values that branch to the same
destination BB may often be handled together in a single new source BB.
In this scenario we need to remove remaining incoming values from PHI
instructions in the destination BB, as to match the number of source
branches.

Differential Revision: http://reviews.llvm.org/D6415

rdar://problem/19040894

llvm-svn: 222926
2014-11-28 19:47:33 +00:00
Erik Eckstein 0d86c7623f reinstate r222872: Peephole optimization in switch table lookup: reuse the guarding table comparison if possible.
Fixed missing dominance check.
Original commit message:

This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
   if (idx < tablesize)
      r = table[idx]; // table does not contain default_value
   else
      r = default_value;
   if (r != default_value)
      ...
Is optimized to:
   cond = idx < tablesize;
   if (cond)
      r = table[idx];
   else
      r = default_value;
   if (cond)
      ...
Jump threading will then eliminate the second if(cond).

llvm-svn: 222891
2014-11-27 15:13:14 +00:00
Suyog Sarda f8516e1662 Use FileCheck instead of grep. Change by Ankur Garg.
Differential Revision: http://reviews.llvm.org/D6430

llvm-svn: 222879
2014-11-27 11:22:49 +00:00
Erik Eckstein 2190cd9ffa Revert "Peephole optimization in switch table lookup: reuse the guarding table comparison if possible."
It is breaking the clang bootstrag.

llvm-svn: 222877
2014-11-27 10:59:08 +00:00
Suyog Sarda c3024c75e0 Use FileCheck instead of grep. Change by Sonam.
Differential Revision: http://reviews.llvm.org/D6432

llvm-svn: 222876
2014-11-27 10:57:24 +00:00
Erik Eckstein e73e308ab9 Peephole optimization in switch table lookup: reuse the guarding table comparison if possible.
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
    if (idx < tablesize)
       r = table[idx]; // table does not contain default_value
    else
       r = default_value;
    if (r != default_value)
       ...
Is optimized to:
    cond = idx < tablesize;
    if (cond)
       r = table[idx];
    else
       r = default_value;
    if (cond)
       ...
\endcode
Jump threading will then eliminate the second if(cond).

llvm-svn: 222872
2014-11-27 08:33:51 +00:00
David Majnemer 40157d5c4d InstCombine: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) == 0 ? X ^ C : X  into  X | C
(X & C) != 0 ? X ^ C : X  into  X & ~C

llvm-svn: 222871
2014-11-27 07:25:21 +00:00
David Majnemer c6a5e1dd4f InstSimplify: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) ? X & ~C : X  into  X & ~C
(X & C) ? X : X & ~C  into  X
(X & C) ? X | C : X  into  X
(X & C) ? X : X | C  into  X | C

llvm-svn: 222868
2014-11-27 06:32:46 +00:00
David Majnemer 5468e86469 Revert "Added inst combine transforms for single bit tests from Chris's note"
This reverts commit r210006, it miscompiled libapr which is used in who
knows how many projects.

A test has been added to ensure that we don't regress again.

I'll work on a rewrite of what the optimization was trying to do later.

llvm-svn: 222856
2014-11-26 23:00:38 +00:00
Hans Wennborg bda193edff Remove useless rdar:// comment from switch_to_lookup_table.ll test.
llvm-svn: 222772
2014-11-25 18:45:23 +00:00
Hans Wennborg 45172aceb3 LazyValueInfo: Actually re-visit partially solved block-values in solveBlockValue()
If solveBlockValue() needs results from predecessors that are not already
computed, it returns false with the intention of resuming when the dependencies
have been resolved. However, the computation would never be resumed since an
'overdefined' result had been placed in the cache, preventing any further
computation.

The point of placing the 'overdefined' result in the cache seems to have been
to break cycles, but we can check for that when inserting work items in the
BlockValue stack instead. This makes the "stop and resume" mechanism of
solveBlockValue() work as intended, unlocking more analysis.

Using this patch shaves 120 KB off a 64-bit Chromium build on Linux.

I benchmarked compiling bzip2.c at -O2 but couldn't measure any difference in
compile time.

Tests by Jiangning Liu from r215343 / PR21238, Pete Cooper, and me.

Differential Revision: http://reviews.llvm.org/D6397

llvm-svn: 222768
2014-11-25 17:23:05 +00:00
Chandler Carruth 816d26fe5e [InstCombine] Change LLVM To canonicalize toward the value type being
stored rather than the pointer type.

This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.

With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.

I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.

llvm-svn: 222748
2014-11-25 10:09:51 +00:00
Suyog Sarda 99c9c1f2b0 Change the test case file to use FileCheck instead of grep. NFC.
Change by Ankur Garg.

Differential Revision: http://reviews.llvm.org/D6382

llvm-svn: 222740
2014-11-25 08:44:56 +00:00
Chandler Carruth 1a3c2c414c Revert r220349 to re-instate r220277 with a fix for PR21330 -- quite
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.

Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

llvm-svn: 222739
2014-11-25 08:20:27 +00:00
David Majnemer bd9ce4ea51 InstSimplify: Handle some simple tautological comparisons
This handles cases where we are comparing a masked value against itself.
The analysis could be further improved by making it recursive but such
expense is not currently justified.

llvm-svn: 222716
2014-11-25 02:55:48 +00:00
Matt Arsenault 238ff1ad1e Bug 21610: Canonicalize min/max fcmp selects to use ordered comparisons
llvm-svn: 222705
2014-11-24 23:15:18 +00:00
Matt Arsenault ea515d33c9 Convert test to FileCheck and use CHECK-LABEL
llvm-svn: 222704
2014-11-24 23:03:17 +00:00
David Majnemer 8e6f6a98b5 InstCombine: Don't create an unused instruction
We would create an instruction but not inserting it.
Not inserting the unused instruction would lead us to verification
failure.

This fixes PR21653.

llvm-svn: 222659
2014-11-24 16:41:13 +00:00
David Majnemer b2a6e7458d InstCombine: Don't assume DataLayout is always available
We tried to get the result of DataLayout::getLargestLegalIntTypeSize but
we didn't have a DataLayout.  This resulted in opt crashing.

This fixes PR21651.

llvm-svn: 222645
2014-11-24 07:26:20 +00:00
Elena Demikhovsky 9e5089a938 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 222632
2014-11-23 08:07:43 +00:00
David Majnemer fb3805576b InstCombine: Propagate exact for (sdiv X, Pow2) -> (udiv X, Pow2)
llvm-svn: 222625
2014-11-22 20:00:41 +00:00
David Majnemer ec6e481bc5 InstCombine: Propagate exact for (sdiv X, Y) -> (udiv X, Y)
llvm-svn: 222624
2014-11-22 20:00:38 +00:00
David Majnemer fa4699e65f InstCombine: Propagate exact for (sdiv -X, C) -> (sdiv X, -C)
llvm-svn: 222623
2014-11-22 20:00:34 +00:00
David Majnemer a3aeb15613 InstCombine: Propagate exact in (udiv (lshr X,C1),C2) -> (udiv x,C1<<C2)
llvm-svn: 222620
2014-11-22 18:16:54 +00:00
David Majnemer 546f81064c InstCombine: Propagate NSW/NUW for X*(1<<Y) -> X<<Y
llvm-svn: 222613
2014-11-22 08:57:02 +00:00
David Majnemer 8279a7506d InstCombine: Propagate NSW for -X * -Y -> X * Y
llvm-svn: 222612
2014-11-22 07:25:19 +00:00
David Majnemer 4efa9ff8ca InstSimplify: Simplify (sub 0, X) -> X if it's NUW
This is a generalization of the X - (0 - Y) -> X transform.

llvm-svn: 222611
2014-11-22 07:15:16 +00:00
David Majnemer 80c8f627db InstCombine: Preserve nsw when folding X*(2^C) -> X << C
llvm-svn: 222606
2014-11-22 04:52:55 +00:00
David Majnemer fd4a6d2b7a InstCombine: Preserve nsw/nuw for ((X << C2)*C1) -> (X * (C1 << C2))
llvm-svn: 222605
2014-11-22 04:52:52 +00:00
David Majnemer 027bc80928 InstCombine: Preserve nsw for (mul %V, -1) -> (sub 0, %V)
llvm-svn: 222604
2014-11-22 04:52:38 +00:00
Gerolf Hoflehner ec6217c929 [InstCombine] Re-commit of r218721 (Optimize icmp-select-icmp sequence)
Fixes the self-host fail. Note that this commit activates dominator
analysis in the combiner by default (like the original commit did).

llvm-svn: 222590
2014-11-21 23:36:44 +00:00
David Majnemer c0a313b57c SROA: The alloca type isn't a candidate promotion type for vectors
The alloca's type is irrelevant, only those types which are used in a
load or store of the exact size of the slice should be considered.

This manifested as an assertion failure when we compared the various
types: we had a size mismatch.

This fixes PR21480.

llvm-svn: 222499
2014-11-21 02:34:55 +00:00
Michael Zolotukhin 0dcae71449 Fix a trip-count overflow issue in LoopUnroll.
Currently LoopUnroll generates a prologue loop before the main loop
body to execute first N%UnrollFactor iterations. Also, this loop is
used if trip-count can overflow - it's determined by a runtime check.

However, we've been mistakenly optimizing this loop to a linear code for
UnrollFactor = 2, not taking into account that it also serves as a safe
version of the loop if its trip-count overflows.

llvm-svn: 222451
2014-11-20 20:19:55 +00:00
Chad Rosier 90a2f9b110 Revert "[Reassociate] As the expression tree is rewritten make sure the operands are"
This reverts commit r222142.  This is causing/exposing an execution-time regression
in spec2006/gcc and coremark on AArch64/A57/Ofast.

Conflicts:

	test/Transforms/Reassociate/optional-flags.ll

llvm-svn: 222398
2014-11-19 23:21:20 +00:00
Suyog Sarda aba97f4aba Vectorize a reduction chain feeding into a 'return' statement.
e.x 
return (a[0]+b[0]) + (a[1]+b[1])

Differential Revision: http://reviews.llvm.org/D6227

llvm-svn: 222364
2014-11-19 16:07:38 +00:00
Arnaud A. de Grandmaison 7b9dc28060 Fix tail recursion elimination
When the BasicBlock containing the return instrution has a PHI with 2
incoming values, FoldReturnIntoUncondBranch will remove the no longer
used incoming value and remove the no longer needed phi as well. This
leaves us with a BB that no longer has a PHI, but the subsequent call
to FoldReturnIntoUncondBranch from FoldReturnAndProcessPred will not
remove the return instruction (which still uses the result of the call
instruction). This prevents EliminateRecursiveTailCall to remove
the value, as it is still being used in a basicblock which has no
predecessors.

The basicblock can not be erased on the spot, because its iterator is
still being used in runTRE.

This issue was exposed when removing the threshold on size for lifetime
marker insertion for named temporaries in clang. The testcase is a much
reduced version of peelOffOuterExpr(const Expr*, const ExplodedNode *)
from clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp.

llvm-svn: 222354
2014-11-19 13:32:51 +00:00
David Majnemer b7adf34ee0 AliasSetTracker: UnknownInsts should contribute to the refcount
AliasSetTracker::addUnknown may create an AliasSet devoid of pointers
just to contain an instruction if no suitable AliasSet already exists.
It will then AliasSet::addUnknownInst and we will be done.

However, it's possible for addUnknown to choose an existing AliasSet to
addUnknownInst.
If this were to occur, we are in a bit of a pickle: removing pointers
from the AliasSet can cause the entire AliasSet to become destroyed,
taking our unknown instructions out with them.

Instead, keep track whether or not our AliasSet has any unknown
instructions.

This fixes PR21582.

llvm-svn: 222338
2014-11-19 09:41:05 +00:00
Manman Ren c67109313c Revert r222039 because of bot failure.
http://lab.llvm.org:8080/green/job/clang-Rlto_master/298/
Hopefully, bot will be green. If not, we will re-submit the commit.

llvm-svn: 222287
2014-11-19 00:13:26 +00:00
David Majnemer c6b8e20a5c InstCombine: Fix another infinite loop caused by visitFPTrunc
We would attempt to replace an frem's operand with the same operand.
This would cause InstCombine to think real work was done, causing
InstCombine to enter an infinite loop.

This fixes the second part of PR21576.

llvm-svn: 222265
2014-11-18 22:06:45 +00:00
David Majnemer b32eaddf11 Revert "Revert r222040 because of bot failure."
This reverts commit r222203, reverting r222040 didn't end up turning the
bot green.

llvm-svn: 222261
2014-11-18 21:30:02 +00:00
Chad Rosier b83c6d9c08 [Reassociate] Use test cases that can actually be optimized to verify optional
flags are cleared.  The reassociation pass was just reordering the leaf nodes
in the previous test cases.

llvm-svn: 222250
2014-11-18 20:34:01 +00:00
Philip Reames 018dbf18c4 Tweak EarlyCSE to recognize series of dead stores
EarlyCSE is giving up on the current instruction immediately when it recognizes that the current instruction makes a previous store trivially dead. There's no reason to do this. Once the previous store has been deleted, it's perfectly legal to remember the value of the current store (for value forwarding) and the fact the store occurred (it could be dead too!).

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D6301

llvm-svn: 222241
2014-11-18 17:46:32 +00:00
David Majnemer 6fdb6b8fd4 InstCombine: Fold away tautological masked compares
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.

While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.

llvm-svn: 222230
2014-11-18 09:31:41 +00:00
David Majnemer 9a91e4a18a IndVarSimplify: Allow LFTR to fire more often
I added a pessimization in r217102 to prevent miscompiles when the
incremented induction variable was used in a comparison; it would be
poison.

Try to use the incremented induction variable more often when we can be
sure that the increment won't end in poison.

Differential Revision: http://reviews.llvm.org/D6222

llvm-svn: 222213
2014-11-18 02:20:58 +00:00
Manman Ren a64bd44fd8 Revert r222040 because of bot failure.
http://lab.llvm.org:8080/green/job/clang-Rlto_master/298/
Hopefully, bot will be green.

llvm-svn: 222203
2014-11-18 00:33:22 +00:00
Juergen Ributzka c9591e9bdb [SimplifyCFG] Make the value type of the hole check bitmask a power-of-2.
When converting a switch to a lookup table we might have to generate a bitmaks
to encode and check for holes in the original switch statement.

The type of this mask depends on the number of switch statements, which can
result in illegal types for pretty much all architectures.

To avoid unnecessary type legalization and help FastISel this commit increases
the size of the bitmask to next power-of-2 value when necessary.

This fixes rdar://problem/18984639.

llvm-svn: 222168
2014-11-17 19:39:56 +00:00
Chad Rosier bc0b869be9 [Reassociate] As the expression tree is rewritten make sure the operands are
emitted in canonical form.

llvm-svn: 222142
2014-11-17 16:33:50 +00:00
Chad Rosier 9a1ac6e494 [Reassociate] Canonicalize constants to RHS operand.
Fix a thinko where the RHS was already a constant.

llvm-svn: 222139
2014-11-17 15:52:51 +00:00
Erik Eckstein 105374fe5e Optimize switch lookup tables with linear mapping.
This is a simple optimization for switch table lookup:
It computes the output value directly with an (optional) mul and add if there is a linear mapping between index and output.
Example:

int f1(int x) {
  switch (x) {
    case 0: return 10;
    case 1: return 11;
    case 2: return 12;
    case 3: return 13;
  }
  return 0;
}

generates:

define i32 @f1(i32 %x) #0 {
entry:
  %0 = icmp ult i32 %x, 4
  br i1 %0, label %switch.lookup, label %return

switch.lookup:
  %switch.offset = add i32 %x, 10
  ret i32 %switch.offset

return:
  ret i32 0
}

llvm-svn: 222121
2014-11-17 09:13:57 +00:00
Rafael Espindola a3b5b60753 Add back r222061 with a fix.
This adds back r222061, but now calls initializePAEvalPass from the correct
library to avoid link problems.

Original message:

Don't make assumptions about the name of private global variables.

Private variables are can be renamed, so it is not reliable to make
decisions on the name.

The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).

This patch changes one case where we were looking at the variable name to use
the section instead.

Test tuning by Michael Gottesman.

llvm-svn: 222117
2014-11-17 02:28:27 +00:00
Reid Kleckner 007239863e Revert "Don't make assumptions about the name of private global variables."
This reverts commit r222061.

It's causing linker errors.

llvm-svn: 222077
2014-11-15 02:03:53 +00:00
Rafael Espindola 2fc723099f Don't make assumptions about the name of private global variables.
Private variables are can be renamed, so it is not reliable to make
decisions on the name.

The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).

This patch changes one case where we were looking at the variable name to use
the section instead.

Test tuning by Michael Gottesman.

llvm-svn: 222061
2014-11-14 23:17:47 +00:00
David Majnemer 8c3d92e7e5 InstCombine: Fix infinite loop caused by visitFPTrunc
We would attempt to replace a fptrunc of an frem with an identical
fptrunc.  This would cause the new fptrunc to be added to the worklist.
Of course, this results in an infinite loop because we will keep
visiting the newly created fptruncs.

This fixes PR21576.

llvm-svn: 222040
2014-11-14 21:21:15 +00:00
Chad Rosier 1ff4c0bf0b Reapply r221924: "[GVN] Perform Scalar PRE on gep indices that feed loads before
doing Load PRE"

This commit updates the failing test in
Analysis/TypeBasedAliasAnalysis/gvn-nonlocal-type-mismatch.ll

The failing test is sensitive to the order in which we process loads.  This
version turns on the RPO traversal instead of the while DT traversal in GVN.
The new test code is functionally same just the order of loads that are
eliminated is swapped.

This new version also fixes an issue where GVN splits a critical edge and
potentially invalidate the RPO/DT iterator.

llvm-svn: 222039
2014-11-14 21:09:13 +00:00
Chad Rosier df8f2a23cb [Reassociate] Canonicalize the operands of all binary operators.
llvm-svn: 222008
2014-11-14 17:09:19 +00:00
Chad Rosier d99df68e19 [Reassociate] Canonicalize operands of vector binary operators.
Prior to this commit fmul and fadd binary operators were being canonicalized for
both scalar and vector versions.  We now canonicalize add, mul, and, or, and xor
vector instructions.

llvm-svn: 222006
2014-11-14 17:08:15 +00:00
Chad Rosier f8b55f1bc5 [Reassociate] Canonicalize constants to RHS operand.
llvm-svn: 222005
2014-11-14 17:05:59 +00:00
Reid Kleckner 29d880bdc7 Relax the gcov version.ll test to check '.' instead of '\*'
The escaping of the '\*' doesn't work with my combination of testing
tools.

llvm-svn: 221944
2014-11-13 23:07:55 +00:00
Chad Rosier 8716b58583 Revert "[GVN] Perform Scalar PRE on gep indices that feed loads before doing Load PRE."
This reverts commit r221924.  It appears the commit was a bit premature and is causing
bot failures that need further investigation.

llvm-svn: 221939
2014-11-13 22:54:59 +00:00
Chad Rosier dd526665fc [GVN] Perform Scalar PRE on gep indices that feed loads before doing Load PRE.
Phabricator Revision: http://reviews.llvm.org/D6103
Patch by "Balaram Makam" <bmakam@codeaurora.org>!

llvm-svn: 221924
2014-11-13 21:17:58 +00:00
Sanjoy Das c5676df3ec Teach ScalarEvolution to sharpen range information.
If x is known to have the range [a, b), in a loop predicated by (icmp
ne x, a) its range can be sharpened to [a + 1, b).  Get
ScalarEvolution and hence IndVars to exploit this fact.

This change triggers an optimization to widen-loop-comp.ll, so it had
to be edited to get it to pass.

This change was originally landed in r219834 but had a bug and broke
ASan. It was reverted in r219878, and is now being re-landed after
fixing the original bug.

phabricator: http://reviews.llvm.org/D5639
reviewed by: atrick

llvm-svn: 221839
2014-11-13 00:00:58 +00:00
Ahmed Bougacha 0788d49a40 [CodeGenPrepare][AArch64] Fix a TLI legality check on iPTR to use a lowered instead.
Fixes PR21548.  Related to PR20474.

llvm-svn: 221820
2014-11-12 22:16:55 +00:00
Sanjay Patel 4c219fd248 CGSCC should not treat intrinsic calls like function calls (PR21403)
Make the handling of calls to intrinsics in CGSCC consistent: 
they are not treated like regular function calls because they
are never lowered to function calls.

Without this patch, we can get dangling pointer asserts from
the subsequent loop that processes callsites because it already
ignores intrinsics.

See http://llvm.org/bugs/show_bug.cgi?id=21403 for more details / discussion.

Differential Revision: http://reviews.llvm.org/D6124

llvm-svn: 221802
2014-11-12 18:25:47 +00:00
Jingyue Wu 8a12cea5f1 Disable indvar widening if arithmetics on the wider type are more expensive
Summary:
Reapply r221772. The old patch breaks the bot because the @indvar_32_bit test
was run whether NVPTX was enabled or not.

IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.

Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.

Fixes PR21148.

Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive. This test is run only when NVPTX is
enabled.

Reviewers: jholewinski, eliben, meheff, atrick

Reviewed By: atrick

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D6196

llvm-svn: 221799
2014-11-12 18:09:15 +00:00
Jingyue Wu a48273390c Reverts r221772 which fails tests
llvm-svn: 221773
2014-11-12 07:19:25 +00:00
Jingyue Wu 635a9b14fa Disable indvar widening if arithmetics on the wider type are more expensive
Summary:
IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.

Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.

Fixes PR21148.

Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive.

Reviewers: jholewinski, eliben, meheff, atrick

Reviewed By: atrick

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D6196

llvm-svn: 221772
2014-11-12 06:58:45 +00:00
Bill Schmidt 729547847f [PowerPC] Add vec_vsx_ld and vec_vsx_st intrinsics
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.

New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td.  These are patterned after the similar
intrinsics for lvx and stvx (Altivec).  In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.

At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp.  This will open up more
optimization opportunities while still allowing the correct
instructions to be generated.  (Similar code exists for aligned
Altivec loads and stores.)

The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().

There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number.  It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.

I ended up having to modify vsx-fma-m.ll.  It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it.  The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands.  Commutativity allows
either to be chosen.  If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result.  Hopefully this doesn't change often.

There is a companion patch for Clang.

llvm-svn: 221767
2014-11-12 04:19:40 +00:00
Chad Rosier f53f07046b [Reassociate] Canonicalize negative constants out of expressions.
Add support for FDiv, which was regressed by the previous commit.

llvm-svn: 221738
2014-11-11 23:36:42 +00:00
Philip Reames 66c6de61ee Canonicalize an assume(load != null) into !nonnull metadata
We currently have two ways of informing the optimizer that the result of a load is never null: metadata and assume. This change converts the second in to the former. This avoids a need to implement optimizations using both forms.

We should probably extend this basic idea to metadata of other forms; in particular, range metadata. We view is that assumes should be considered a "last resort" for when there isn't a more canonical way to represent something.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5951

llvm-svn: 221737
2014-11-11 23:33:19 +00:00
Chad Rosier 094ac7735b [Reassociate] Canonicalize negative constants out of expressions.
This is a reapplication of r221171, but we only perform the transformation
on expressions which include a multiplication.  We do not transform rem/div
operations as this doesn't appear to be safe in all cases.

llvm-svn: 221721
2014-11-11 22:58:35 +00:00
Suyog Sarda beb064bd94 Addition to r216371 (SLP and Loop Vectorization) and r218607 where
cost model for signed division by power of 2 was improved for AArch64.
The revision r218607 missed test case for Loop Vectorization.
Adding it in this revision.

Differential Revision: http://reviews.llvm.org/D6181

llvm-svn: 221674
2014-11-11 07:39:27 +00:00
Juergen Ributzka d441725d3d [SwitchLowering] Fix the "fixPhis" function.
Switch statements may have more than one incoming edge into the same BB if they
all have the same value. When the switch statement is converted these incoming
edges are now coming from multiple BBs. Updating all incoming values to be from
a single BB is incorrect and would generate invalid LLVM IR.

The fix is to only update the first occurrence of an incoming value. Switch
lowering will perform subsequent calls to this helper function for each incoming
edge with a new basic block - updating all edges in the process.

This fixes rdar://problem/18916275.

llvm-svn: 221627
2014-11-10 21:05:27 +00:00
Chad Rosier b3eb452e83 [Reassociate] Better preserve NSW/NUW flags.
Part of PR12985.

Phabricator Revision: http://reviews.llvm.org/D6172

llvm-svn: 221555
2014-11-07 22:12:57 +00:00
David Majnemer 2098b86f64 SCCP: overdefined calls cannot become constant
We would attempt to fold away a call instruction which had been marked
overdefined.  However, it's not valid to transition to constant from
overdefined.

This fixes PR21512.

llvm-svn: 221513
2014-11-07 08:54:19 +00:00
David Majnemer bf93e7c7d3 LoopVectorize: Don't assume pointees are sized
A pointer's pointee might not be sized: the pointee could be a function.

Report this as IK_NoInduction when calculating isInductionVariable.

This fixes PR21508.

llvm-svn: 221501
2014-11-07 00:31:14 +00:00
David Majnemer c1eca5ad7c InstCombine: Rely on cmpxchg's return code when it's strong
Comparing the result of a cmpxchg instruction can be replaced with an
extractvalue of the cmpxchg success indicator.

llvm-svn: 221498
2014-11-06 23:23:30 +00:00
Chad Rosier ac6a2f532c [Reassociate] Don't reassociate when mixing regular and fast-math FP
instructions.  Inlining might cause such cases and it's not valid to
reassociate floating-point instructions without the unsafe algebra flag.

Patch by Mehdi Amini <mehdi_amini@apple.com>!

llvm-svn: 221462
2014-11-06 16:46:37 +00:00
Justin Bogner 58e41344f9 GCOV: Make sure that function idents in the .gcda and .gcno match
When generating gcov compatible profiling, we sometimes skip emitting
data for functions for one reason or another. However, this was
emitting different function IDs in the .gcno and .gcda files, because
the .gcno case was using the loop index before skipping functions and
the .gcda the array index after. This resulted in completely invalid
gcov data.

This fixes the problem by making the .gcno loop track the ID
separately from the loop index.

llvm-svn: 221441
2014-11-06 06:55:02 +00:00
NAKAMURA Takumi 61b2f48453 llvm/test/Transforms/GCOVProfiling: Avoid to parse backslashes in MDString. Use %/T instead of %T.
LLVM Parser decodes "\bb" as hex in "C:\bb-win7\buildername\build...", with MDString.

See also, http://llvm.org/docs/LangRef.html#metadata-nodes-and-metadata-strings

This reverts r221270, "Disable 3 tests in llvm/test/Transforms/GCOVProfiling/ for now. Investigating."

FIXME: Please check EC in GCOVProfiler::emitProfileNotes().
llvm-svn: 221334
2014-11-05 06:29:05 +00:00
David Majnemer bf7550e7ec InstSimplify: Exact shifts of X by Y are X if X has the lsb set
Exact shifts may not shift out any non-zero bits. Use computeKnownBits
to determine when this occurs and just return the left hand side.

This fixes PR21477.

llvm-svn: 221325
2014-11-05 00:59:59 +00:00
David Majnemer f20d7c4c61 Analysis: Make isSafeToSpeculativelyExecute fire less for divides
Divides and remainder operations do not behave like other operations
when they are given poison: they turn into undefined behavior.

It's really hard to know if the operands going into a div are or are not
poison.  Because of this, we should only choose to speculate if there
are constant operands which we can easily reason about.

This fixes PR21412.

llvm-svn: 221318
2014-11-04 23:49:08 +00:00
Reid Kleckner 941e93e9a8 Revert "[Reassociate] Canonicalize negative constants out of expressions."
This reverts commit r221171.

It performs this invalid transformation:
-  %div.i = urem i64 -1, %add
-  %sub.i = sub i64 -2, %div.i
+  %div.i = urem i64 1, %add
+  %sub.i1 = add i64 %div.i, -2

llvm-svn: 221317
2014-11-04 23:42:45 +00:00
NAKAMURA Takumi 14e3fc6ad4 Disable 3 tests in llvm/test/Transforms/GCOVProfiling/ for now. Investigating.
llvm-svn: 221270
2014-11-04 14:41:53 +00:00
NAKAMURA Takumi 06ac98299f Remove "REQUIRES:shell" from tests. They work for me.
llvm-svn: 221269
2014-11-04 13:41:33 +00:00
NAKAMURA Takumi 217ee5bf92 llvm/test/Transforms/GCOVProfiling/linezero.ll: Use %/T instead of %T in regex. This works on win32.
llvm-svn: 221262
2014-11-04 13:00:48 +00:00
David Majnemer d28edfea03 Minimize test case further
No functional change intended.

llvm-svn: 221237
2014-11-04 05:17:58 +00:00
Reid Kleckner dd3f3edafa Revert "Transforms: reapply SVN r219899"
This reverts commit r220811 and r220839. It made an incorrect change to
musttail handling.

llvm-svn: 221226
2014-11-04 02:02:14 +00:00
Hal Finkel 840257a49c Use AA in LoadCombine
LoadCombine can be smarter about aborting when a writing instruction is
encountered, instead of aborting upon encountering any writing instruction, use
an AliasSetTracker, and only abort when encountering some write that might
alias with the loads that could potentially be combined.

This was originally motivated by comments made (and a test case provided) by
David Majnemer in response to PR21448. It turned out that LoadCombine was not
responsible for that PR, but LoadCombine should also be improved so that
unrelated stores (and @llvm.assume) don't interrupt load combining.

llvm-svn: 221203
2014-11-03 23:19:16 +00:00
David Majnemer 7e2b9882b1 InstCombine: Remove infinite loop caused by FoldOpIntoPhi
FoldOpIntoPhi could create an infinite loop if the PHI could potentially
reach a BB it was considering inserting instructions into.  The
instructions it would insert would eventually lead to other combines
firing which would, again, lead to FoldOpIntoPhi firing.

The solution is to handicap FoldOpIntoPhi so that it doesn't attempt to
insert instructions that the PHI might reach.

This fixes PR21377.

llvm-svn: 221187
2014-11-03 21:55:12 +00:00
Hal Finkel 1e16fa302e EarlyCSE should ignore calls to @llvm.assume
EarlyCSE uses a simple generation scheme for handling memory-based
dependencies, and calls to @llvm.assume (which are marked as writing to memory
to ensure the preservation of control dependencies) disturb that scheme
unnecessarily. Skipping calls to @llvm.assume is legal, and the alternative
(adding AA calls in EarlyCSE) is likely undesirable (we have GVN for that).

Fixes PR21448.

llvm-svn: 221175
2014-11-03 20:21:32 +00:00
Chad Rosier 005505b027 [Reassociate] Canonicalize negative constants out of expressions.
This gives CSE/GVN more options to eliminate duplicate expressions.
This is a follow up patch to http://reviews.llvm.org/D4904.

http://reviews.llvm.org/D5363

llvm-svn: 221171
2014-11-03 19:11:30 +00:00
Paul Robinson ad06e430ce Normally an 'optnone' function goes through fast-isel, which does not
call DAGCombiner. But we ran into a case (on Windows) where the
calling convention causes argument lowering to bail out of fast-isel,
and we end up in CodeGenAndEmitDAG() which does run DAGCombiner.
So, we need to make DAGCombiner check for 'optnone' after all.

Commit includes the test that found this, plus another one that got
missed in the original optnone work.

llvm-svn: 221168
2014-11-03 18:19:26 +00:00
David Majnemer 72a643dc8f InstCombine: Combine (X | Y) - X to (~X & Y)
This implements the transformation from (X | Y) - X to (~X & Y).

Differential Revision: http://reviews.llvm.org/D5791

llvm-svn: 221129
2014-11-03 05:53:55 +00:00
Elena Demikhovsky 27152aea88 Use Alias Analysis to hoist 2 loads from diamond to the common predecessor basic block.
Alias Analysis allows to detect real barriers for load hoisting.

Review in http://reviews.llvm.org/D5991

llvm-svn: 221091
2014-11-02 08:03:05 +00:00
David Majnemer 634ca236dc InstCombine: Don't assume that m_ZExt matches an Instruction
m_ZExt might bind against a ConstantExpr instead of an Instruction.
Assuming this, using cast<Instruction>, results in InstCombine crashing.

Instead, introduce ZExtOperator to bridge both Instruction and
ConstantExpr ZExts.

This fixes PR21445.

llvm-svn: 221069
2014-11-01 23:46:05 +00:00
David Majnemer 549f4f2510 InstCombine: Combine (X+cst) < 0 --> X < -cst
This can happen pretty often in code that looks like:
int foo = bar - 1;
if (foo < 0)
  do stuff

In this case, bar < 1 is an equivalent condition.

This transform requires that the add instruction be annotated with nsw.

llvm-svn: 221045
2014-11-01 09:09:51 +00:00
Michael Zolotukhin 9b9624de0c Correctly update dom-tree after loop vectorizer.
llvm-svn: 221009
2014-10-31 22:28:03 +00:00
Bradley Smith 9992b167ae [SCEV] Improve Scalar Evolution's use of no {un,}signed wrap flags
In a case where we have a no {un,}signed wrap flag on the increment, if
RHS - Start is constant then we can avoid inserting a max operation bewteen
the two, since we can statically determine which is greater.

This allows us to unroll loops such as:

 void testcase3(int v) {
   for (int i=v; i<=v+1; ++i)
     f(i);
 }

llvm-svn: 220960
2014-10-31 11:40:32 +00:00
NAKAMURA Takumi d9913e6d35 llvm/test/Transforms/SampleProfile/syntax.ll: Relax MISSING-FILE not to
check locale-aware message catalog.

llvm-svn: 220934
2014-10-30 22:28:46 +00:00
Philip Reames 4cb4d3e048 Add handling for range metadata in ValueTracking isKnownNonZero
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes.  This helps to remove redundant checks and canonicalize checks for other optimization passes.  This particular patch checks whether a value is known to be non-zero from the range metadata.

Currently, these tests are against InstCombine.  In theory, all of these should be InstSimplify since we're not inserting any new instructions.  Moving the code may follow in a separate change.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5947

llvm-svn: 220925
2014-10-30 20:25:19 +00:00
Diego Novillo c572e92c76 Add profile writing capabilities for sampling profiles.
Summary:
This patch finishes up support for handling sampling profiles in both
text and binary formats. The new binary format uses uleb128 encoding to
represent numeric values. This makes profiles files about 25% smaller.

The profile writer class can write profiles in the existing text and the
new binary format. In subsequent patches, I will add the capability to
read (and perhaps write) profiles in the gcov format used by GCC.

Additionally, I will be adding support in llvm-profdata to manipulate
sampling profiles.

There was a bit of refactoring needed to separate some code that was in
the reader files, but is actually common to both the reader and writer.

The new test checks that reading the same profile encoded as text or
raw, produces the same results.

Reviewers: bogner, dexonsmith

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6000

llvm-svn: 220915
2014-10-30 18:00:06 +00:00
NAKAMURA Takumi 27b6d47f36 llvm/test/Transforms/LoopRotate/nosimplifylatch.ll: Fix possibly mis-repeatedly-pasted test.
llvm-svn: 220880
2014-10-29 23:05:12 +00:00
Yi Jiang 323d57336c Test Case for r220872:Do not simplifyLatch for loops where hoisting increments couldresult in extra live range interferance
llvm-svn: 220873
2014-10-29 20:20:33 +00:00
Yi Jiang ab19fff4d8 Do not simplifyLatch for loops where hoisting increments couldresult in extra live range interferance
llvm-svn: 220872
2014-10-29 20:19:47 +00:00
Saleem Abdulrasool 56ade2991b test: tweak inlined-allocs test
Remove pointless checks for storage of uninteresting values.  Ensure that we
perform basic alias analysis to make the test more correct.  Finally, apply a
stylistic change to the test.

llvm-svn: 220839
2014-10-29 06:31:11 +00:00
Saleem Abdulrasool d178ada55e Transforms: reapply SVN r219899
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).

In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds.  Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call.  As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.

llvm-svn: 220811
2014-10-28 18:27:37 +00:00
David Majnemer c8bdd23acf InstCombine: Fix a combine assuming that icmp operands were integers
An icmp may have pointer arguments, it isn't limited to integers or
vectors of integers.

This fixes PR21388.

llvm-svn: 220664
2014-10-27 05:47:49 +00:00
Jingyue Wu fe72fcebf6 [SeparateConstOffsetFromGEP] Fixed a bug related to unsigned modulo
The dividend in "signed % unsigned" is treated as unsigned instead of signed,
causing unexpected behavior such as -64 % (uint64_t)24 == 0.

Added a regression test in split-gep.ll

Patched by Hao Liu.

llvm-svn: 220618
2014-10-25 18:34:03 +00:00
Jingyue Wu b723152379 [SeparateConstOffsetFromGEP] Fixed a bug in rebuilding OR expressions
The two operands of the new OR expression should be NextInChain and TheOther
instead of the two original operands.

Added a regression test in split-gep.ll.

Hao Liu reported this bug, and provded the test case and an initial patch.
Thanks! 

llvm-svn: 220615
2014-10-25 17:36:21 +00:00
Sanjay Patel 848309da7c Handle sqrt() shrinking in SimplifyLibCalls like any other call
This patch removes a chunk of special case logic for folding 
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.

No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.

I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.

Differential Revision: http://reviews.llvm.org/D5919

llvm-svn: 220514
2014-10-23 21:52:45 +00:00
Justin Bogner 72d1f2b61b test: Make this test runnable in directories with @ in their names
Jenkins likes to use directories with names involving the '@'
character, which breaks the sed expression in this test. Switch to use
'|' on the assumption that it's less likely to show up in a path.

llvm-svn: 220401
2014-10-22 18:18:54 +00:00
Sanjay Patel a92fa44740 Shrinkify libcalls: use float versions of double libm functions with fast-math (bug 17850)
When a call to a double-precision libm function has fast-math semantics 
(via function attribute for now because there is no IR-level FMF on calls), 
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.

We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.

I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.

Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.

This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850

Differential Revision: http://reviews.llvm.org/D5893

llvm-svn: 220390
2014-10-22 15:29:23 +00:00
Diego Novillo a67c0b43e1 Change error to warning when a profile cannot be found.
When the profile for a function cannot be applied, we use to emit an
error. This seems extreme. The compiler can continue, it's just that the
optimization opportunities won't include profile information.

llvm-svn: 220386
2014-10-22 13:36:35 +00:00
Diego Novillo 8027b80b41 Support using sample profiles with partial debug info.
Summary:
When using a profile, we used to require the use -gmlt so that we could
get access to the line locations. This is used to match line numbers in
the input profile to the line numbers in the function's IR.

But this is actually not necessary. The driver can provide source
location tracking without the emission of debug information. In these
cases, the annotation 'llvm.dbg.cu' is missing from the IR, but the
actual line location annotations are still present.

This patch adds a new way of looking for the start of the current
function. Instead of looking through the compile units in llvm.dbg.cu,
we can walk up the scope for the first instruction in the function with
a debug loc. If that describes the function, we use it. Otherwise, we
keep looking until we find one.

If no such instruction is found, we then give up and produce an error.

Reviewers: echristo, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5887

llvm-svn: 220382
2014-10-22 12:59:00 +00:00
Bruno Cardoso Lopes c29520c5b3 [InstSimplify] Support constant folding to vector of pointers
ConstantFolding crashes when trying to InstSimplify the following load:

@a = private unnamed_addr constant %mst {
     i8* inttoptr (i64 -1 to i8*),
     i8* inttoptr (i64 -1 to i8*)
}, align 8

%x = load <2 x i8*>* bitcast (%mst* @a to <2 x i8*>*), align 8

This patch fix this by adding support to this type of folding:

%x = load <2 x i8*>* bitcast (%mst* @a to <2 x i8*>*), align 8
==> gets folded to:
  %x = <2 x i8*> <i8* inttoptr (i64 -1 to i8*), i8* inttoptr (i64 -1 to i8*)>

llvm-svn: 220380
2014-10-22 12:18:48 +00:00
Hans Wennborg 0b39fc0d16 Revert "Teach the load analysis to allow finding available values which require" (r220277)
This seems to have caused PR21330.

llvm-svn: 220349
2014-10-21 23:49:52 +00:00
Matt Arsenault d6511b49ac Add minnum / maxnum intrinsics
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.

llvm-svn: 220341
2014-10-21 23:00:20 +00:00
David Majnemer d205602a0b InstCombine: Simplify FoldICmpCstShrCst
This function was complicated by the fact that it tried to perform
canonicalizations that were already preformed by InstSimplify.  Remove
this extra code and move the tests over to InstSimplify.  Add asserts to
make sure our preconditions hold before we make any assumptions.

llvm-svn: 220314
2014-10-21 19:51:55 +00:00
Chandler Carruth aa72a6dd3b Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

llvm-svn: 220277
2014-10-21 09:00:40 +00:00
Philip Reames cdb72f369f Introduce a 'nonnull' metadata on Load instructions.
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns.  Long term, it would be nice to combine these into a single construct.   The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.

Reviewed by: Hal Finkel
Differential Revision:  http://reviews.llvm.org/D5220

llvm-svn: 220240
2014-10-20 22:40:55 +00:00
Chandler Carruth a32038b006 Fix a miscompile introduced in r220178.
The original code had an implicit assumption that if the test for
allocas or globals was reached, the two pointers were not equal. With my
changes to make the pointer analysis more powerful here, I also had to
guard against circumstances where the results weren't useful. That in
turn violated the assumption and gave rise to a circumstance in which we
could have a store with both the queried pointer and stored pointer
rooted at *the same* alloca. Clearly, we cannot ignore such a store.
There are other things we might do in this code to better handle the
case of both pointers ending up at the same alloca or global, but it
seems best to at least make the test explicit in what it intends to
check.

I've added tests for both the alloca and global case here.

llvm-svn: 220190
2014-10-20 10:03:01 +00:00
Chandler Carruth 6665d62117 Fix a somewhat subtle pair of issues with JumpThreading I introduced in
r220178. First, the creation routine doesn't insert prior to the
terminator of the basic block provided, but really at the end of the
basic block. Instead, get the terminator and insert before that. The
next issue was that we need to ensure multiple PHI node entries for
a single predecessor re-use the same cast instruction rather than
creating new ones.

All of the logic here was without tests previously. I've reduced and
added a test case from the test suite that crashed without both of these
fixes.

llvm-svn: 220186
2014-10-20 05:34:36 +00:00
Chandler Carruth eeec35ae1c Teach the load analysis driving core instcombine logic and other bits of
logic to look through pointer casts, making them trivially stronger in
the face of loads and stores with intervening pointer casts.

I've included a few test cases that demonstrate the kind of folding
instcombine can do without pointer casts and then variations which
obfuscate the logic through bitcasts. Without this patch, the variations
all fail to optimize fully.

This is more important now than it has been in the past as I've started
moving the load canonicialization to more closely follow the value type
requirements rather than the pointer type requirements and thus this
needs to be prepared for more pointer casts. When I made the same change
to stores several test cases regressed without logic along these lines
so I wanted to systematically improve matters first.

llvm-svn: 220178
2014-10-20 00:24:14 +00:00
Chandler Carruth b5f4c32830 Add a datalayout string to this test so that it exercises the full gamut
of InstCombine rather than just the bits enabled when datalayout is
optional.

The primary fixes here are because now things are little endian.

In good news, silliness like this seems like it will be going away as
we've got pretty stong consensus on dropping optional datalayout
entirely.

llvm-svn: 220176
2014-10-20 00:11:31 +00:00
Chandler Carruth bc6378defb Do a better and more complete job of preserving metadata when combining
loads.

This handles many more cases than just the AA metadata, some of them
suggested by Hal in his review of the AA metadata handling patch. I've
tried to test this behavior where tractable to do so.

I'll point out that I have specifically *not* included a test for
debuginfo because it was going to require 2 or 3 times as much work to
craft some input which would survive the "helpful" stripping of debug
info metadata that doesn't match the desired schema. This is another
good example of why the current state of write-ability for our debug
info metadata is unacceptable. I spent over 30 minutes trying to conjure
some test case that would survive, even copying from other debug info
tests, but it always failed to survive with no explanation of why or how
I might fix it. =[

llvm-svn: 220165
2014-10-19 10:46:46 +00:00
Chandler Carruth 5b8cd2f73c Move previously dead code to handle computing the known bits of an alias
up to where it actually works as intended. The problem is that
a GlobalAlias isa GlobalValue and so the prior block handled all of the
cases.

This allows us to constant fold based on the actual constant expression
in the global alias. As an example, see the last function in the newly
added test case which explicitly aligns an unaligned pointer using
constant expression math. Without this change, we fail to see that and
fold an alignment test to zero.

llvm-svn: 220164
2014-10-19 09:06:56 +00:00
David Majnemer 312c3e5f39 InstCombine: (sub (or A B) (xor A B)) --> (and A B)
The following implements the transformation:
(sub (or A B) (xor A B)) --> (and A B).

Patch by Ankur Garg!

Differential Revision: http://reviews.llvm.org/D5719

llvm-svn: 220163
2014-10-19 08:32:32 +00:00
David Majnemer 59939acd26 InstCombine: Optimize icmp eq/ne (shl Const2, A), Const1
The following implements the optimization for sequences of the form:
icmp eq/ne (shl Const2, A), Const1

Such sequences can be transformed to:
icmp eq/ne A, (TrailingZeros(Const1) - TrailingZeros(Const2))

This handles only the equality operators for now. Other operators need
to be handled.

Patch by Ankur Garg!

llvm-svn: 220162
2014-10-19 08:23:08 +00:00
Chandler Carruth a801dd5799 Fix a long-standing miscompile in the load analysis that was uncovered
by my refactoring of this code.

The method isSafeToLoadUnconditionally assumes that the load will
proceed with the preferred type alignment. Given that, it has to ensure
that the alloca or global is at least that aligned. It has always done
this historically when a datalayout is present, but has never checked it
when the datalayout is absent. When I refactored the code in r220156,
I exposed this path when datalayout was present and that turned the
latent bug into a patent bug.

This fixes the issue by just removing the special case which allows
folding things without datalayout. This isn't worth the complexity of
trying to tease apart when it is or isn't safe without actually knowing
the preferred alignment.

llvm-svn: 220161
2014-10-19 08:17:50 +00:00
Chandler Carruth be9dccd64d Preserve AA metadata when combining (cast (load (...))) -> (load (cast
(...))).

llvm-svn: 220141
2014-10-18 11:00:12 +00:00
Chandler Carruth 2f75fcfef3 [InstCombine] Do an about-face on how LLVM canonicalizes (cast (load
...)) and (load (cast ...)): canonicalize toward the former.

Historically, we've tried to load using the type of the *pointer*, and
tried to match that type as closely as possible removing as many pointer
casts as we could and trading them for bitcasts of the loaded value.
This is deeply and fundamentally wrong.

Repeat after me: memory does not have a type! This was a hard lesson for
me to learn working on SROA.

There is only one thing that should actually drive the type used for
a pointer, and that is the type which we need to use to load from that
pointer. Matching up pointer types to the loaded value types is very
useful because it minimizes the physical size of the IR required for
no-op casts. Similarly, the only thing that should drive the type used
for a loaded value is *how that value is used*! Again, this minimizes
casts. And in fact, the *only* thing motivating types in any part of
LLVM's IR are the types used by the operations in the IR. We should
match them as closely as possible.

I've ended up removing some tests here as they were testing bugs or
behavior that is no longer present. Mostly though, this is just cleanup
to let the tests continue to function as intended.

The only fallout I've found so far from this change was SROA and I have
fixed it to not be impeded by the different type of load. If you find
more places where this change causes optimizations not to fire, those
too are likely bugs where we are assuming that the type of pointers is
"significant" for optimization purposes.

llvm-svn: 220138
2014-10-18 06:36:22 +00:00
Chandler Carruth 71009cad95 Remove a test that was ported from the old llvm-gcc frontend test suite.
This test is pretty awesome. It is claiming to test devirtualization.
However, the code in question is not in fact devirtualized by LLVM. If
you take the original C++ test case and run it through Clang at -O3 we
fail to devirtualize it completely. It also isn't a sufficiently focused
test case.

The *reason* we fail to devirtualize it isn't because of any missing
instcombine though. Instead, it is because we fail to emit an available
externally vtable and thus the vtable is just an external and completely
opaque. If I cause the vtable to be emitted, we successfully
devirtualize things.

Anyways, I'm just removing it because it is providing negative value at
this point: it isn't representative of the output of Clang really, LLVM
isn't doing the transform it claims to be testing, LLVM's failure to do
the transform isn't actually an LLVM bug at all and we shouldn't be
testing for it here, and finally the test is written in such a way that
it will trivially pass even when the point of the test is failing.

llvm-svn: 220137
2014-10-18 06:36:18 +00:00
Chandler Carruth 2dc9682e59 [SROA] Change how SROA does vector-based promotion of allocas to handle
cases where the alloca type, the load types, and the store types used
all disagree.

Previously, the only way that vector-based promotion occured was if the
alloca type was a vector type. This was one of the *very* few remaining
uses of the alloca's type to guide SROA/mem2reg left in LLVM. It turns
out it was a bad idea.

The alloca type can change very easily based on the mixture of types
loaded and stored to that alloca. We shouldn't be relying on it as
a signal for very much. Instead, the source of truth should be loads and
stores. We should canonicalize the loads and stores as much as possible
and then rely on them exclusively in SROA.

When looking and loads and stores, we may find many different candidate
vector types. This change will let SROA try all of them to find a vector
type which is a viable way to promote the entire alloca to a vector
register.

With this change, it becomes possible to do better canonicalization and
optimization of loads and stores without breaking SROA in random ways,
and that should allow fixing a core source of performance loss in hot
numerical loops such as those in Eigen.

llvm-svn: 220116
2014-10-18 00:44:02 +00:00
Rafael Espindola 7da1ea83a9 Revert "TRE: make TRE a bit more aggressive"
This reverts commit r219899.

This also updates byval-tail-call.ll to make it clear what was breaking.
Adding r219899 again will cause the load/store to disappear.

llvm-svn: 220093
2014-10-17 21:25:48 +00:00
Hal Finkel dd38c0b876 [DSE] Remove no-data-layout-only type-based overlap checking
DSE's overlap checking contained special logic, used only when no DataLayout
was available, which inferred a complete overwrite when the pointee types were
equal. This logic seems fine for regular loads/stores, but does not work for
memcpy and friends. Instead of fixing this, I'm just removing it.
Philosophically, transformations should not contain enhanced behavior used only
when data layout is lacking (data layout should be strictly additive), and
maintaining these rarely-tested code paths seems not worthwhile at this stage.

Credit to Aliaksei Zasenka for the bug report and the diagnosis. The test case
(slightly reduced from that provided by Aliaksei) replaces the original
contents of test/Transforms/DeadStoreElimination/no-targetdata.ll -- a few
other tests have been updated to have a data layout.

llvm-svn: 220035
2014-10-17 11:56:00 +00:00
Rafael Espindola 11aaaeebe0 Delete -std-compile-opts.
These days -std-compile-opts was just a silly alias for -O3.

llvm-svn: 219951
2014-10-16 20:00:02 +00:00
Bjorn Steinbrink d20816fde9 Allow call-slop optzn for destinations with a suitable dereferenceable attribute
Summary:
Currently, call slot optimization requires that if the destination is an
argument, the argument has the sret attribute. This is to ensure that
the memory access won't trap. In addition to sret, we can also allow the
optimization to happen for arguments that have the new dereferenceable
attribute, which gives the same guarantee.

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5832

llvm-svn: 219950
2014-10-16 19:43:08 +00:00
Sanjay Patel c699a6117b fold: sqrt(x * x * y) -> fabs(x) * sqrt(y)
If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().

In the simplest case, this:

   y = sqrt(x * x);

becomes this:

   y = fabs(x);

This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.

Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.

Differential Revision: http://reviews.llvm.org/D5787

llvm-svn: 219944
2014-10-16 18:48:17 +00:00
Akira Hatanaka 5c221ef98f Reapply r219832 - InstCombine: Narrow switch instructions using known bits.
The code committed in r219832 asserted when it attempted to shrink a switch
statement whose type was larger than 64-bit.

llvm-svn: 219902
2014-10-16 06:00:46 +00:00
Saleem Abdulrasool 7f52921976 TRE: make TRE a bit more aggressive
Make tail recursion elimination a bit more aggressive.  This allows us to get
tail recursion on functions that are just branches to a different function.  The
fact that the function takes a byval argument does not restrict it from being
optimised into just a tail call.

llvm-svn: 219899
2014-10-16 03:27:30 +00:00
Akira Hatanaka 40c2cf4afc Revert r219832.
llvm-svn: 219884
2014-10-16 01:17:02 +00:00
Sanjoy Das 360b1ed5f2 Revert "r219834 - Teach ScalarEvolution to sharpen range information"
This change breaks the asan buildbots:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/13468

llvm-svn: 219878
2014-10-15 23:46:04 +00:00
Hal Finkel 68dc3c7ab2 Preserve non-byval pointer alignment attributes using @llvm.assume when inlining
For pointer-typed function arguments, enhanced alignment can be asserted using
the 'align' attribute. When inlining, if this enhanced alignment information is
not otherwise available, preserve it using @llvm.assume-based alignment
assumptions.

llvm-svn: 219876
2014-10-15 23:44:41 +00:00
Sanjoy Das 90c2f1455a Teach ScalarEvolution to sharpen range information.
If x is known to have the range [a, b) in a loop predicated by (icmp
ne x, a), its range can be sharpened to [a + 1, b).  Get
ScalarEvolution and hence IndVars to exploit this fact.
    
This change triggers an optimization to widen-loop-comp.ll, so it had
to be edited to get it to pass.

phabricator: http://reviews.llvm.org/D5639
llvm-svn: 219834
2014-10-15 19:25:28 +00:00
Akira Hatanaka 5bb9346a45 InstCombine: Narrow switch instructions using known bits.
Truncate the operands of a switch instruction to a narrower type if the upper
bits are known to be all ones or zeros.

rdar://problem/17720004

llvm-svn: 219832
2014-10-15 19:05:50 +00:00
Hal Finkel 3b7fc86677 [SLPVectorize] Basic ephemeral-value awareness
The SLP vectorizer should not vectorize ephemeral values. These are used to
express information to the optimizer, and vectorizing them does not lead to
faster code (because the ephemeral values are dropped prior to code generation,
vectorized or not), and obscures the information the instructions are
attempting to communicate (the logic that interprets the arguments to
@llvm.assume generically does not understand vectorized conditions).

Also, uses by ephemeral values are free (because they, and the necessary
extractelement instructions, will be dropped prior to code generation).

llvm-svn: 219816
2014-10-15 17:35:01 +00:00
Hal Finkel 1a600faba0 [LoopVectorize] Ignore @llvm.assume for cost estimates and legality
A few minor changes to prevent @llvm.assume from interfering with loop
vectorization. First, treat @llvm.assume like the lifetime intrinsics, which
are scalarized (but don't otherwise interfere with the legality checking).
Second, ignore the cost of ephemeral instructions in the loop (these will go
away anyway during CodeGen).

Alignment assumptions and other uses of @llvm.assume can often end up inside of
loops that should be vectorized (this is not uncommon for assumptions generated
by __attribute__((align_value(n))), for example).

llvm-svn: 219741
2014-10-14 22:59:49 +00:00
Sanjay Patel 0ca42bb5a8 Optimize away fabs() calls when input is squared (known positive).
Eliminate library calls and intrinsic calls to fabs when the input 
is a squared value.

Note that no unsafe-math / fast-math assumptions are needed for
this optimization.

Differential Revision: http://reviews.llvm.org/D5777

llvm-svn: 219717
2014-10-14 20:43:11 +00:00
David Majnemer dad2103801 InstCombine: Don't miscompile X % ((Pow2 << A) >>u B)
We assumed that A must be greater than B because the right hand side of
a remainder operator must be nonzero.

However, it is possible for A to be less than B if Pow2 is a power of
two greater than 1.

Take for example:
i32 %A = 0
i32 %B = 31
i32 Pow2 = 2147483648

((Pow2 << 0) >>u 31) is non-zero but A is less than B.

This fixes PR21274.

llvm-svn: 219713
2014-10-14 20:28:40 +00:00
Hal Finkel 171c2ec008 Revert "r216914 - Revert: [APFloat] Fixed a bug in method 'fusedMultiplyAdd'"
Reapply r216913, a fix for PR20832 by Andrea Di Biagio. The commit was reverted
because of buildbot failures, and credit goes to Ulrich Weigand for isolating
the underlying issue (which can be confirmed by Valgrind, which does helpfully
light up like the fourth of July). Uli explained the problem with the original
patch as:

  It seems the problem is calling multiplySignificand with an addend of category
  fcZero; that is not expected by this routine.  Note that for fcZero, the
  significand parts are simply uninitialized, but the code in (or rather, called
  from) multiplySignificand will unconditionally access them -- in effect using
  uninitialized contents.

This version avoids using a category == fcZero addend within
multiplySignificand, which avoids this problem (the Valgrind output is also now
clean).

Original commit message:

[APFloat] Fixed a bug in method 'fusedMultiplyAdd'.

When folding a fused multiply-add builtin call, make sure that we propagate the
correct result in the case where the addend is zero, and the two other operands
are finite non-zero.

Example:
  define double @test() {
    %1 = call double @llvm.fma.f64(double 7.0, double 8.0, double 0.0)
    ret double %1
  }

Before this patch, the instruction simplifier wrongly folded the builtin call
in function @test to constant 'double 7.0'.
With this patch, method 'fusedMultiplyAdd' correctly evaluates the multiply and
propagates the expected result (i.e. 56.0).

Added test fold-builtin-fma.ll with the reproducible from PR20832 plus extra
test cases to verify the behavior of method 'fusedMultiplyAdd' in the presence
of NaN/Inf operands.

This fixes PR20832.

llvm-svn: 219708
2014-10-14 19:23:07 +00:00
Hal Finkel a3f23e3725 [LVI] Check for @llvm.assume dominating the edge branch
When LazyValueInfo uses @llvm.assume intrinsics to provide edge-value
constraints, we should check for intrinsics that dominate the edge's branch,
not just any potential context instructions. An assumption that dominates the
edge's branch represents a truth on that edge. This is specifically useful, for
example, if multiple predecessors assume a pointer to be nonnull, allowing us
to simplify a later null comparison.

The test case, and an initial patch, were provided by Philip Reames. Thanks!

llvm-svn: 219688
2014-10-14 16:04:49 +00:00
Marcello Maggioni 5bbe3df63f Switch to select optimization for two-case switches
This is the same optimization of r219233 with modifications to support PHIs with multiple incoming edges from the same block
and a test to check that this condition is handled.

llvm-svn: 219656
2014-10-14 01:58:26 +00:00
David Majnemer db0773089f InstCombine: Fix miscompile in X % -Y -> X % Y transform
We assumed that negation operations of the form (0 - %Z) resulted in a
negative number.  This isn't true if %Z was originally negative.
Substituting the negative number into the remainder operation may result
in undefined behavior because the dividend might be INT_MIN.

This fixes PR21256.

llvm-svn: 219639
2014-10-13 22:37:51 +00:00
David Majnemer a252138942 InstCombine: Don't miscompile (x lshr C1) udiv C2
We have a transform that changes:
  (x lshr C1) udiv C2
into:
  x udiv (C2 << C1)

However, it is unsafe to do so if C2 << C1 discards any of C2's bits.

This fixes PR21255.

llvm-svn: 219634
2014-10-13 21:48:30 +00:00
Joerg Sonnenberger 5ca10d0edb Revert r219223, it creates invalid PHI nodes.
llvm-svn: 219587
2014-10-12 17:16:04 +00:00