__builtin_prefetch code to only emit one diagnostic per builtin_prefetch.
While this has nothing to do with the rest of the patch, the code seemed
like overkill when I was updating it.
llvm-svn: 59588
not "int".
Fix a typo in the promotion of enumeration types that was causing some
integral promotions to look like integral conversions (leading to
extra ambiguities in overload resolution).
Check for "acceptable" overloaded operators based on the types of the
arguments. This is a somewhat odd check that is specified by the
standard, but I can't see why it actually matters: the overload
candidates it suppresses don't seem like they would ever be picked as
the best candidates.
llvm-svn: 59583
- Add variants of IsNonPragmaNonMacroLexer to accept an IncludeMacroStack entry
(simplifies some uses).
- Use IsNonPragmaNonMacroLexer in Preprocessor::LookupFile.
Performance testing of -Eonly on Cocoa.h shows no performance regression because
of this patch.
llvm-svn: 59574
to support operators defined as member functions, e.g.,
struct X {
bool operator==(X&);
};
Overloading with non-member operators is supported, and the special
rules for the implicit object parameter (e.g., the ability for a
non-const *this to bind to an rvalue) are implemented.
This change also refactors and generalizes the code for adding
overload candidates for overloaded operator calls (C++ [over.match.expr]),
both to match the rules more exactly (name lookup of non-member
operators actually ignores member operators) and to make this routine
more reusable for the other overloaded operators.
Testing for the initialization of the implicit object parameter is
very light. More tests will come when we get support for calling
member functions directly (e.g., o.m(a1, a2)).
llvm-svn: 59564
As soon as we detect duplicate interfaces, discontinue further semantic checks (returning the original interface).
This is now consistent with how we handle protocols (and less error prone in general).
llvm-svn: 59541
DeclRefExprs and BlockDeclRefExprs into a single function
Sema::ActOnDeclarationNameExpr, eliminating a bunch of duplicate
lookup-name-and-check-the-result code.
Note that we still have the three parser entry points for identifiers,
operator-function-ids, and conversion-function-ids, since the parser
doesn't (and shouldn't) know about DeclarationNames. This is a Good
Thing (TM), and there will be more entrypoints coming (e.g., for C++
pseudo-destructor expressions).
llvm-svn: 59527
operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
llvm-svn: 59526
and let the clients push whatever they want into the DiagnosticInfo
instead of hard coding a few forms. Also switch various clients to
use Diag(Tok, ...) instead of Diag(Tok.getLocation(), ...) as the
canonical form to simplify the code a bit.
llvm-svn: 59509
are formed. In particular, a diagnostic with all its strings and ranges is now
packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a
ton of random stuff. This has the benefit of simplifying the interface, making
it more extensible, and allowing us to do more checking for things like access
past the end of the various arrays passed in.
In addition to introducing DiagnosticInfo, this also substantially changes how
Diagnostic::Report works. Instead of being passed in all of the info required
to issue a diagnostic, Report now takes only the required info (a location and
ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to
stuff strings and ranges into the DiagnosticInfo with the << operator. When
the dtor runs on the DiagnosticInfo object (which should happen at the end of
the statement), the diagnostic is actually emitted with all of the accumulated
information. This is a somewhat tricky dance, but it means that the
accumulated DiagnosticInfo is allowed to keep pointers to other expression
temporaries without those pointers getting invalidated.
This is just the minimal change to get this stuff working, but this will allow
us to eliminate the zillions of variant "Diag" methods scattered throughout
(e.g.) sema. For example, instead of calling:
Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
SourceRange(BuiltinLoc, RParenLoc));
We will soon be able to just do:
Diag(BuiltinLoc, diag::err_overload_no_match)
<< typeNames << SourceRange(BuiltinLoc, RParenLoc));
This scales better to support arbitrary types being passed in (not just
strings) in a type-safe way. Go operator overloading?!
llvm-svn: 59502
strings instead of array of strings. This reduces string copying
in some not-very-important cases, but paves the way for future
improvements.
llvm-svn: 59494
- Add static method to test if the current lexer is a non-macro/non-pragma
lexer.
- Refactor some code in PPLexerChange to use this static method.
- No performance change.
llvm-svn: 59486