By default, this hook tells GlobalISel to abort (report a fatal error)
when it encounters an error. The alternative will be to fall back on
SDISel.
This fall back will be removed when the bring-up of GlobalISel is over.
llvm-svn: 279879
This method allows to reset the state of a MachineFunction as if it was
just created. This will be used during the bring-up of GlobalISel to
provide a way to fallback on SelectionDAG. That way, we can start doing
correctness testing even if we are not able to select all functions via
the global instruction selector.
llvm-svn: 279876
This mapping is between pointers, which DenseMap is particularly good
at. Most targets aren't really affected, but if there's a lot of
subregister composition this can shave off a good chunk of time from
generating registers.
llvm-svn: 279875
Summary:
If the scheduler clusters the loads, then the offsets will be sorted,
but it is possible for the scheduler to scheduler loads together
without out explicitly clustering them, which would give us non-sorted
offsets.
Also, we will want to do this if we move the load/store optimizer before
the scheduler.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23776
llvm-svn: 279870
Summary:
There are a few different sgpr pressure sets, but we only care about
the one which covers all of the sgprs. We were using hard-coded
register pressure set names to determine the reg set id for the
biggest sgpr set. However, we were using the wrong name, and this
method is pretty fragile, since the reg pressure set names may
change.
The new method just looks for the pressure set that contains the most
reg units and sets that set as our SGPR pressure set. We've also
adopted the same technique for determining our VGPR pressure set.
Reviewers: arsenm
Subscribers: MatzeB, arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23687
llvm-svn: 279867
This will expose the check targets for runtime project components into the top-level build. It will enable exposing targets like check-asan.
llvm-svn: 279861
Summary:
This is obviously an interesting case because it may motivate code
restructuring or LTO.
Reporting this requires instantiation of ORE in the loop where the call
sites are first gathered. I've checked compile-time
overhead *with* -Rpass-with-hotness and the worst slow-down was 6% in
mcf and quickly tailing off. As before without -Rpass-with-hotness
there is no overhead.
Because this could be a pretty noisy diagnostics, it is currently
qualified as 'verbose'. As of this patch, 'verbose' diagnostics are
only emitted with -Rpass-with-hotness, i.e. when the output is expected
to be filtered.
Reviewers: eraman, chandlerc, davidxl, hfinkel
Subscribers: tejohnson, Prazek, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D23415
llvm-svn: 279860
We need to explicitly pass LLVM_INCLUDE_TESTS through from the top-level to the runtimes configuration because it isn't in LLVMConfig.cmake
llvm-svn: 279857
We already have obtained a pointer to the underlying GlobalObject,
use it directly to find the comdat, rather than using the
GlobalValue::getComdat which will do the same thing again.
llvm-svn: 279856
In the code to detect fixed-point conversions and make use of AArch64's special
instructions, we weren't prepared for weird types. The fptosi direction got
fixed recently, but not the similar sitofp code.
llvm-svn: 279852
Like other recent changes near here, the goal is to allow vector types for
all of these folds. Splitting things up makes it easier to incrementally
enhance the code and easier to read.
llvm-svn: 279851
MCContext already has many tasks, and separating CodeView out from it is
probably a good idea. The .cv_loc tracking was modelled on the DWARF
tracking which lived directly in MCContext.
Removes the inclusion of MCCodeView.h from MCContext.h, so now there are
only 10 build actions while I hack on CodeView support instead of 265.
llvm-svn: 279847
It's unclear how the old
%res(32) = G_ICMP { s32, s32 } intpred(eq), %0, %1
is actually different from an s1 verison
%res(1) = G_ICMP { s1, s32 } intpred(eq), %0, %1
so we'll remove it for now.
llvm-svn: 279843
Summary: Dead store elimination gets very expensive when large numbers of instructions need to be analyzed. This patch limits the number of instructions analyzed per store to the value of the memdep-block-scan-limit parameter (which defaults to 100). This resulted in no observed difference in performance of the generated code, and no change in the statistics for the dead store elimination pass, but improved compilation time on some files by more than an order of magnitude.
Reviewers: dexonsmith, bruno, george.burgess.iv, dberlin, reames, davidxl
Subscribers: davide, chandlerc, dberlin, davidxl, eraman, tejohnson, mbodart, llvm-commits
Differential Revision: https://reviews.llvm.org/D15537
llvm-svn: 279833
1. Add the "explicit" specifier to the single-argument constructor of Pattern
2. Reorder the fields to remove excessive padding (8 bytes).
Patch by Alexander Shaposhnikov!
llvm-svn: 279832
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used. See the new comments in
the patch.
Instead we use it directly just like the inliner does in D22694.
As expected there is some additional overhead after removing the caching
provided by analysis passes. The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%. As before, this only
affects -Rpass-with-hotness and not default compilation.
llvm-svn: 279829
Removing the redundant 'CmpRHSV' local variable exposes a bug in the caller
foldICmpShrConstant() - it was sending in the div constant instead of the
cmp constant. But I have not been able to expose this in a regression test
yet - the affected folds all appear to be handled before we ever reach this
code. I'll keep trying to find a case as I make changes to allow vector folds
in both functions.
llvm-svn: 279828
Summary:
In fuctions that contained debug info but were empty otherwise,
the ARM load/store optimizer could abort. This was because
function MergeReturnIntoLDM handled the special case where a
Machine Basic BLock is empty by calling MBB.empty(). However, this
returns false in presence of debug info, although the function
should be considered empty in the eyes of the load/store optimizer.
This has been fixed by handling the case where searching through the
block finds only debug instructions.
Reviewers: rengolin, dexonsmith, llvm-commits, jmolloy
Subscribers: t.p.northover, aemerson, rengolin, samparker
Differential Revision: https://reviews.llvm.org/D23847
llvm-svn: 279820
This function allows getting arbitrary sized block of random bytes.
Primary motivation is support for --build-id=uuid in lld.
Differential revision: https://reviews.llvm.org/D23671
llvm-svn: 279807
This was for some reason skipping operands that are subregisters
instead of keeping the same subregister index.
v_movreld_b32 expects src0 to be the subregister of the tied
super register use/def.
e.g.
v_movreld_b32 v0, v9, <imp-def, tied3> v[0:3], <imp-use, tied2> v[0:3]
was being replaced with
v[4:7] = copy v[0:3]
v_movreld_b32 v0, v9, <imp-def, tied3> v[4:7], <imp-use, tied2> v[4:7],
which really writes to v[0:3]
llvm-svn: 279804
The assertion doesn't always hold true as sizeof(SDNodeBits) isn't equal
to sizeof(uint16_t) for some targets. For example, sizeof(SDNodeBits)
evaluates to 1, not 2, for ARM's APCS targets.
llvm-svn: 279797