It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
Summary:
Just because INC/DEC is a little slow on some processors doesn't mean we shouldn't prefer it when optimizing for size.
This appears to match gcc behavior.
Reviewers: chandlerc, zvi, RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37177
llvm-svn: 312866
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862
The lxv/stxv instructions require an offset that is 0 % 16. Previously we were
selecting lxv/stxv for loads and stores to the stack where the offset from the
slot was a multiple of 16, but the stack slot was not 16 or more byte aligned.
When the frame gets lowered these transform to r(1|31) + slot + offset.
If slot is not aligned, slot + offset may not be 0 % 16.
Now we require 16 byte or more alignment for select lxv/stxv to stack slots.
Includes a testcase that shows both sufficiently and insufficiently aligned
stack slots.
llvm-svn: 312843
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
llvm-svn: 312832
On a Windows bot, I see a FileCheck error where the source being matched
over no longer exists, i.e it seems like it's FileCheck'ing some stale
output:
http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/4747
You can see "// CHECK: [[@LINE]]|{{ +}Marker at 19:3 = 1" in the
FileCheck stderr, but that CHECK line doesn't exist.
Remove the input file to FileCheck before running the test, to try and
appease the bot.
llvm-svn: 312825
The various scalar bit operations set SCC,
so one is erased or moved it needs to be recomputed.
Not sure why the existing tests don't fail on this.
llvm-svn: 312819
A coverage segment contains a starting line and column, an execution
count, and some other metadata. Clients of the coverage library use
segments to prepare line-oriented reports.
Users of the coverage library depend on segments being unique and sorted
in source order. Currently this is not guaranteed (this is why the clang
change which introduced deferred regions was reverted).
This commit documents the "unique and sorted" condition and asserts that
it holds. It also fixes the SegmentBuilder so that it produces correct
output in some edge cases.
Testing: I've added unit tests for some edge cases. I've also checked
that the new SegmentBuilder implementation is fully covered. Apart from
running check-profile and the llvm-cov tests, I've successfully used a
stage1 llvm-cov to prepare a coverage report for an instrumented clang
binary.
Differential Revision: https://reviews.llvm.org/D36813
llvm-svn: 312817
Each source region has a start and end location. Report an error when
the end location does not precede the begin location.
The old lineExecutionCounts.covmapping test actually had a buggy source
region in it. This commit introduces a regenerated copy of the coverage
and moves the old copy to malformedRegions.covmapping, for a test.
Differential Revision: https://reviews.llvm.org/D37387
llvm-svn: 312814
Make sure that the text and html emitters always emit the same set of
region markers, and avoid emitting redundant markers for line segments
which don't end on the line they start on.
This is related to D35925, and depends on D36014
Differential Revision: https://reviews.llvm.org/D36020
llvm-svn: 312813
rL312641 Allowed llvm.memcpy/memset/memmove to be tail calls when parent
function return the intrinsics's first argument. However on arm-none-eabi
platform, llvm.memcpy will be expanded to __aeabi_memcpy which doesn't
have return value. The fix is to check the libcall name after expansion
to match "memcpy/memset/memmove" before allowing those intrinsic to be
tail calls.
llvm-svn: 312799
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
Summary:
This fixes code-gen for XRay in PPC. The regression wasn't caught by
codegen tests which we add in this change.
What happened was the following:
- For tail exits, we used to unconditionally prepend the returns/exits
with a pseudo-instruction that gets lowered to the instrumentation
sled (and leave the actual return/exit instruction as-is).
- Changes to the XRay instrumentation pass caused the tail exits to
suddenly also emit the tail exit pseudo-instruction, since the check
for whether a return instruction was also a call instruction meant it
was a tail exit instruction.
- None of the tests caught the regression either due to non-existent
tests, or the tests being disabled/removed for continuous breakage.
This change re-introduces some of the basic tests and verifies that
we're back to a state that allows the back-end to generate appropriate
XRay instrumented binaries for PPC in the presence of tail exits.
Reviewers: echristo, timshen
Subscribers: nemanjai, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D37570
llvm-svn: 312772
cover the bitwise operators.
Nothing really exciting here, this just stamps out the rest of the core
operations that can RMW memory and set flags.
Still not implemented here: ADC, SBB. Those will require more
interesting logic to channel the flags *in*, and I'm not currently
planning to try to tackle that. It might be interesting for someone who
wants to improve our code generation for bignum implementations.
Differential Revision: https://reviews.llvm.org/D37141
llvm-svn: 312768
This is required when targeting COFF, as the comdat name must match
one of the names of the symbols in the comdat.
Differential Revision: https://reviews.llvm.org/D37550
llvm-svn: 312767
operands and used flags to support matching immediate operands.
This is a bit trickier than register operands, and we still want to fall
back on a register operands even for things that appear to be
"immediates" when they won't actually select into the operation's
immediate operand. This also requires us to handle things like selecting
`sub` vs. `add` to minimize the number of bits needed to represent the
immediate, and picking the shortest immediate encoding. In order to
that, we in turn need to scan to make sure that CF isn't used as it will
get inverted.
The end result seems very nice though, and we're now generating
optimal instruction sequences for these patterns IMO.
A follow-up patch will further expand this to other operations with RMW
memory operands. But handing `add` and `sub` are useful starting points
to flesh out the machinery and make sure interesting and complex cases
can be handled.
Thanks to Craig Topper who provided a few fixes and improvements to this
patch in addition to the review!
Differential Revision: https://reviews.llvm.org/D37139
llvm-svn: 312764
Most callers were not expecting the exit(0) and trying to exit with a
different value.
This also adds back the call to cl::PrintHelpMessage in llvm-ar.
llvm-svn: 312761
r312318 - Debug info for variables whose type is shrinked to bool
r312325, r312424, r312489 - Test case for r312318
Revision 312318 introduced a null dereference bug.
Details in https://bugs.llvm.org/show_bug.cgi?id=34490
llvm-svn: 312758
As is indexes above SHN_LORESERVE will not be handled correctly because
they'll be treated as indexes of sections rather than special values
that should just be copied. This change adds support to copy them
though.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D37393
llvm-svn: 312756
We already uses pipefail to detect failure of a redirected command, so
the "|| echo failure" construct was unnecessary.
These tests run and pass on Windows now.
llvm-svn: 312747
Right now Symbols must be either undefined or defined in a specific
section. Some symbols have section indexes like SHN_ABS however. This
change adds support for outputting symbols that have such section
indexes.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D37391
llvm-svn: 312745
The tests are filechecking against stderr and use some magic to make stdout go
away and pipe stderr to FileCheck. This broke bots on windows.
llvm-svn: 312739
For now CUDA-9 is not included in the list of CUDA versions clang
searches for, so the path to CUDA-9 must be explicitly passed
via --cuda-path=.
On LLVM side NVPTX added sm_70 GPU type which bumps required
PTX version to 6.0, but otherwise is equivalent to sm_62 at the moment.
Differential Revision: https://reviews.llvm.org/D37576
llvm-svn: 312734
Second try after fixing a code san problem with iterator reference types.
This change introduces a subcommand to the llvm-xray tool called
"stacks" which allows for analysing XRay traces provided as inputs and
accounting time to stacks instead of just individual functions. This
gives us a more precise view of where in a program the latency is
actually attributed.
The tool uses a trie data structure to keep track of the caller-callee
relationships as we process the XRay traces. In particular, we keep
track of the function call stack as we enter functions. While we're
doing this we're adding nodes in a trie and indicating a "calls"
relatinship between the caller (current top of the stack) and the callee
(the new top of the stack). When we push function ids onto the stack, we
keep track of the timestamp (TSC) for the enter event.
When exiting functions, we are able to account the duration by getting
the difference between the timestamp of the exit event and the
corresponding entry event in the stack. This works even if we somehow
miss the exit events for intermediary functions (i.e. if the exit event
is not cleanly associated with the enter event at the top of the stack).
The output of the tool currently provides just the top N leaf functions
that contribute the most latency, and the top N stacks that have the
most frequency. In the future we can provide more sophisticated query
mechanisms and potentially an export to database feature to make offline
analysis of the stack traces possible with existing tools.
Differential revision: D34863
llvm-svn: 312733
These don't add any value as they're just compositions of existing
patterns. However, they can confuse the cost logic in ISel, leading to
duplicated vcvt instructions like in PR33199.
llvm-svn: 312724
This patch expands the support of lowerInterleavedload to {8|16|32}x8i stride 3.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=3 VF={8|16|32}) and we plan to include the store (deinterleved side).
The patch goal is to optimize the following sequence:
a0 b0 c0 a1 b1 c1 a2 b2
c2 a3 b3 c3 a4 b4 c4 a5
b5 c5 a6 b6 c6 a7 b7 c7
into
a0 a1 a2 a3 a4 a5 a6 a7
b0 b1 b2 b3 b4 b5 b6 b7
c0 c1 c2 c3 c4 c5 c6 c7
Reviewers
1. zvi
2. igor
3. guyblank
4. dorit
5. Ayal
llvm-svn: 312722
Summary:
For large basic blocks with lots of combinable instructions, the
MachineTraceMetrics computations in MachineCombiner can dominate the compile
time, as computing the trace information is quadratic in the number of
instructions in a BB and it's relevant successors/predecessors.
In most cases, knowing the instruction depth should be enough to make
combination decisions. As we already iterate over all instructions in a basic
block, the instruction depth can be computed incrementally. This reduces the
cost of machine-combine drastically in cases where lots of instructions
are combined. The major drawback is that AFAIK, computing the critical path
length cannot be done incrementally. Therefore we only compute
instruction depths incrementally, for basic blocks with more
instructions than inc_threshold. The -machine-combiner-inc-threshold
option can be used to set the threshold and allows for easier
experimenting and checking if using incremental updates for all basic
blocks has any impact on the performance.
Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn
Reviewed By: fhahn
Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D36619
llvm-svn: 312719
Summary:
Add patterns for
fptoui <16 x float> to <16 x i8>
fptoui <16 x float> to <16 x i16>
Reviewers: igorb, delena, craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37505
llvm-svn: 312704
The current code that handles personality functions when creating a
module summary does not correctly handle the case where a function's
personality function operand refers to the function indirectly
(e.g. via a bitcast). This patch handles such cases by treating
personality function references like any other reference, i.e. by
adding them to the function's reference list. This has the minor side
benefit of allowing personality functions to participate in early
dead stripping.
We do this by calling findRefEdges on the function itself. This way
we also end up handling other function operands (specifically prefix
data and prologue data) for free.
Differential Revision: https://reviews.llvm.org/D37553
llvm-svn: 312698
Globals that are promoted to an ARM constant pool may alias with another
existing constant pool entry. We need to keep a reference to all globals
that were promoted to each constant pool value so that we can emit a
distinct label for each promoted global. These labels are necessary so
that debug info can refer to the promoted global without an undefined
reference during linking.
Patch by Stephen Crane!
llvm-svn: 312692
This change adds support for SHT_REL and SHT_RELA sections in
llvm-objcopy.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D36554
llvm-svn: 312680
This change only treats imported and exports functions and globals
as symbol table entries the object has a "linking" section (i.e. it is
relocatable object file).
In this case all globals must be of type I32 and initialized with
i32.const. This was previously being assumed but not checked for and
was causing a failure on big endian machines due to using the wrong
value of then union.
See: https://bugs.llvm.org/show_bug.cgi?id=34487
Differential Revision: https://reviews.llvm.org/D37497
llvm-svn: 312674
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.
To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
two functions and behaving like computeLiveIns() before this patch.
Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D37034
llvm-svn: 312668
Consider this type of a loop:
for (...) {
...
if (...) continue;
...
}
Normally, the "continue" would branch to the loop control code that
checks whether the loop should continue iterating and which contains
the (often) unique loop latch branch. In certain cases jump threading
can "thread" the inner branch directly to the loop header, creating
a second loop latch. Loop canonicalization would then transform this
loop into a loop nest. The problem with this is that in such a loop
nest neither loop is countable even if the original loop was. This
may inhibit subsequent loop optimizations and be detrimental to
performance.
Differential Revision: https://reviews.llvm.org/D36404
llvm-svn: 312664
When if-converting a diamond, two separate blocks will be placed back
to back to form a straight line code. To ensure correctness of the
liveness information, any registers that are live in the second block
should not be killed in the first block, even if they were in the
original code.
Additionally, when the two blocks share common instructions at the
beginning, these instructions will not be duplicated, but only placed
once, before both of the blocks. Since the function "isIdenticalTo"
(as used here) ignores kill flags, the common initial code in one
block may have a kill flag for a register that is live in the other
block.
Because the code that removes kill flags only runs for the non-common
parts of the predicated blocks, a kill flag mismatch in the common
code could still lead to a live register being killed prematurely.
llvm-svn: 312654
This change adds support for SHT_REL and SHT_RELA sections in
llvm-objcopy.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D36554
llvm-svn: 312643
function return the intrinsics's first argument.
llvm.memcpy/memset/memmove return void but they will return the first
argument after they are expanded as libcalls. Now if the parent function
has any return value, llvm.memcpy cannot be turned into tail call after
expansion.
The patch is to handle that case in SelectionDAGBuilder so when caller
function return the same value as the first argument of llvm.memcpy,
tail call is allowed.
Differential Revision: https://reviews.llvm.org/D37406
llvm-svn: 312641
Summary:
Mesa still uses a hack where empty inline assembly is used as a kind of
optimization barrier. This exposed a problem where not enough wait states
were inserted, because the hazard recognizer implicitly assumed that each
inline assembly "instruction" has at least one wait state.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D37205
llvm-svn: 312635
performing a zext of a register.
On the PR there is discussion of how to more effectively handle this,
but this patch prevents us from miscompiling code.
Differential Revision: https://reviews.llvm.org/D37504
llvm-svn: 312620
Summary:
Most instructions in AVX work “in-lane”, that is, each source element is applied only to other
elements of the same lane, thus a cross lane permutation is costly and needs more than one instrution.
AVX2 includes instructions to perform any-to-any permutation of words over a 256-bit register
and vectorized table lookup.
This should also Fix PR34369
Differential Revision: https://reviews.llvm.org/D37388
llvm-svn: 312608
Without this we would have multiple relocations pointing to symbols
with the same name: the empty string. There was no way for yaml2obj to
be able to handle that.
A more general solution would be to unique symbol names in a similar
way to how we unique section names. In practice I think this covers
all common cases and is a bit more user friendly than using names like
sym1, sym2, sym3, etc.
llvm-svn: 312603
When packet size equals packet align and is power of 2, transform
__read_pipe* and __write_pipe* to specialized library function.
Differential Revision: https://reviews.llvm.org/D36831
llvm-svn: 312598
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
llvm-svn: 312591
Missing these could potentially screw up post-ra scheduling.
Issue found by inspection, so I don't have a real testcase. Included
test just verifies the expected operands after expansion.
Differential Revision: https://reviews.llvm.org/D35156
llvm-svn: 312589
Without this patch passing a .o file with multiple sections with the
same name to obj2yaml produces a yaml file that yaml2obj cannot
handle. This is pr34162.
The problem is that when specifying, for example, the section of a
symbol, we get only
Section: foo
and don't know which of the sections whose name is foo we have to use.
One alternative would be to use section numbers. This would work, but
the output from obj2yaml would be very inconvenient to edit as
deleting a section would invalidate all indexes.
Another alternative would be to invent a unique section id that would
exist only on yaml. This would work, but seems a bit heavy handed. We
could make the id optional and default it to the section name.
Since in the last alternative the id is basically what this patch uses
as a name, it can be implemented as a followup patch if needed.
llvm-svn: 312585
S_UDT records are basically the "bridge" between the debugger's
expression evaluator and the type information. If you type
(Foo*)nullptr into the watch window, the debugger looks for an
S_UDT record named Foo. If it can find one, it displays your type.
Otherwise you get an error.
We have always understood this to mean that if you have code like
this:
struct A {
int X;
};
struct B {
typedef A AT;
AT Member;
};
that you will get 3 S_UDT records. "A", "B", and "B::AT". Because
if you were to type (B::AT*)nullptr into the debugger, it would
need to find an S_UDT record named "B::AT".
But "B::AT" is actually the S_UDT record that would be generated
if B were a namespace, not a struct. So the debugger needs to be
able to distinguish this case. So what it does is:
1. Look for an S_UDT named "B::AT". If it finds one, it knows
that AT is in a namespace.
2. If it doesn't find one, split at the scope resolution operator,
and look for an S_UDT named B. If it finds one, look up the type
for B, and then look for AT as one of its members.
With this algorithm, S_UDT records for nested typedefs are not just
unnecessary, but actually wrong!
The results of implementing this in clang are dramatic. It cuts
our /DEBUG:FASTLINK PDB sizes by more than 50%, and we go from
being ~20% larger than MSVC PDBs on average, to ~40% smaller.
It also slightly speeds up link time. We get about 10% faster
links than without this patch.
Differential Revision: https://reviews.llvm.org/D37410
llvm-svn: 312583
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
We had already disabled the pattern for SSE4.1 and SSE4.2. But it got re-enabled for AVX and AVX512.
With SSE41 we rely on a separate (v4f32 (X86vzmovl VR128)) pattern to select blendps with a xorps to create zeroess. And a separate (v4f32 (scalar_to_vector FR32X)) to select a COPY_TO_REG_CLASS to move FR32 to VR128
The same thing can happen for AVX with vblendps and those separate patterns already exist.
For AVX512, (v4f32 (X86vzmov VR128)) will select a VMOVSS instruction instead of VBLENDPS due to their not being a EVEX VBLENDPS. This is what we were getting out of the larger pattern anyway. So the larger pattern is unneeded for AVX512 too.
For SSE1-SSSE3 we can rely on (v4f32 (X86vzmov VR128)) selecting a MOVSS similar to AVX512. Again this is what the larger pattern did too.
So the only real change here is that AVX1/2 now properly outputs a VBLENDPS during isel instead of a VMOVSS to match SSE41. Most tests didn't notice because the two address instruction pass knows how to turn VMOVSS into VBLENDPS to get an independent destination register.
llvm-svn: 312564
In RWPI code, globals that are not read-only are accessed relative to
the SB register (R9). This is achieved by explicitly generating an ADD
instruction between SB and an offset that we either load from a constant
pool or movw + movt into a register.
llvm-svn: 312521
This is possible if C1 and C2 are both powers of 2. Or if binop is 'and' then ~C2 needs to be a power of 2.
We already support this for 'or', but we should be able to support 'and' and 'xor'. This will be enhanced by D37274.
llvm-svn: 312519
If multiple conditional branches are executed based on the same comparison, we can execute multiple conditional branches based on the result of one comparison on PPC. For example,
if (a == 0) { ... }
else if (a < 0) { ... }
can be executed by one compare and two conditional branches instead of two pairs of a compare and a conditional branch.
This patch identifies a code sequence of the two pairs of a compare and a conditional branch and merge the compares if possible.
To maximize the opportunity, we do canonicalization of code sequence before merging compares.
For the above example, the input for this pass looks like:
cmplwi r3, 0
beq 0, .LBB0_3
cmpwi r3, -1
bgt 0, .LBB0_4
So, before merging two compares, we canonicalize it as
cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
beq 0, .LBB0_3
cmpwi r3, 0 ; greather than -1 means greater or equal to 0
bge 0, .LBB0_4
The generated code should be
cmpwi r3, 0
beq 0, .LBB0_3
bge 0, .LBB0_4
Differential Revision: https://reviews.llvm.org/D37211
llvm-svn: 312514
As noted in PR11210:
https://bugs.llvm.org/show_bug.cgi?id=11210
...fixing this should allow us to eliminate x86-specific masked store intrinsics in IR.
(Although more testing will be needed to confirm that.)
llvm-svn: 312496
It solves issue of wrong section index evaluating for ranges when
base address is used.
Based on David Blaikie's patch D36097.
Differential revision: https://reviews.llvm.org/D37214
llvm-svn: 312477
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
llvm-svn: 312472
Debug information can be, and was, corrupted when the runtime
remainder loop was fully unrolled. This is because a !null node can
be created instead of a unique one describing the loop. In this case,
the original node gets incorrectly updated with the NewLoopID
metadata.
In the case when the remainder loop is going to be quickly fully
unrolled, there isn't the need to add loop metadata for it anyway.
Differential Revision: https://reviews.llvm.org/D37338
llvm-svn: 312471
Summary:
This is a re-roll of D36615 which uses PLT relocations in the back-end
to the call to __xray_CustomEvent() when building in -fPIC and
-fxray-instrument mode.
Reviewers: pcc, djasper, bkramer
Subscribers: sdardis, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D37373
llvm-svn: 312466
Ideally we'd be able to emit the SUBREG_TO_REG without the explicit register->register move, but we'd need to be sure the producing operation would select something that guaranteed the upper bits were already zeroed.
llvm-svn: 312450
In a future patch, I plan to teach isel to use a small vector move with implicit zeroing of the upper elements when it sees the (insert_subvector zero, X, 0) pattern.
llvm-svn: 312448
Throughout an effort to strongly check the behavior of CodeGen with the IR shufflevector instruction we generated many tests while predicting the best X86 sequence that may be generated.
This is a subset of the generated tests that we think may add value to our X86 set of tests.
Some of the checks are not optimal and will be changed after fixing:
1. PR34394
2. PR34382
3. PR34380
4. PR34359
Differential Revision: https://reviews.llvm.org/D37329
llvm-svn: 312442
The function combineShuffleToVectorExtend in DAGCombine might generate an illegal typed node after "legalize types" phase, causing assertion on non-simple type to fail afterwards.
Adding a type check in case the combine is running after the type legalize pass.
Differential Revision: https://reviews.llvm.org/D37330
llvm-svn: 312438
This change introduces a subcommand to the llvm-xray tool called
"stacks" which allows for analysing XRay traces provided as inputs and
accounting time to stacks instead of just individual functions. This
gives us a more precise view of where in a program the latency is
actually attributed.
The tool uses a trie data structure to keep track of the caller-callee
relationships as we process the XRay traces. In particular, we keep
track of the function call stack as we enter functions. While we're
doing this we're adding nodes in a trie and indicating a "calls"
relatinship between the caller (current top of the stack) and the callee
(the new top of the stack). When we push function ids onto the stack, we
keep track of the timestamp (TSC) for the enter event.
When exiting functions, we are able to account the duration by getting
the difference between the timestamp of the exit event and the
corresponding entry event in the stack. This works even if we somehow
miss the exit events for intermediary functions (i.e. if the exit event
is not cleanly associated with the enter event at the top of the stack).
The output of the tool currently provides just the top N leaf functions
that contribute the most latency, and the top N stacks that have the
most frequency. In the future we can provide more sophisticated query
mechanisms and potentially an export to database feature to make offline
analysis of the stack traces possible with existing tools.
llvm-svn: 312426
Summary:
ZExt and SExt from i8 to i16 aren't implemented in the autogenerated fast isel table because normal isel does a zext/sext to 32-bits and a subreg extract to avoid a partial register write or false dependency on the upper bits of the destination. This means without handling in fast isel we end up triggering a fast isel abort.
We had no custom sign extend handling at all so while I was there I went ahead and implemented sext i1->i8/i16/i32/i64 which was also missing. This generates an i1->i8 sign extend using a mask with 1, then an 8-bit negate, then continues with a sext from i8. A better sequence would be a wider and/negate, but would require more custom code.
Fast isel tests are a mess and I couldn't find a good home for the tests so I created a new one.
The test pr34381.ll had to have fast-isel removed because it was relying on a fast isel abort to hit the bug. The test case still seems valid with fast-isel disabled though some of the instructions changed.
Reviewers: spatel, zvi, igorb, guyblank, RKSimon
Reviewed By: guyblank
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37320
llvm-svn: 312422
The binutils utility dwp has an option "-e"
https://gcc.gnu.org/wiki/DebugFissionDWP
to specify an executable/library to get the list
of *.dwo files from it. This option is particularly useful when
someone runs the tool manually outside of a build system.
This diff adds an implementation of "-e" to llvm-dwp.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D37371
llvm-svn: 312409
Summary:
After a discussion with Rekka, i believe this (or a small variant)
should fix the remaining phi-of-ops problems.
Rekka's algorithm for completeness relies on looking up expressions
that should have no leader, and expecting it to fail (IE looking up
expressions that can't exist in a predecessor, and expecting it to
find nothing).
Unfortunately, sometimes these expressions can be simplified to
constants, but we need the lookup to fail anyway. Additionally, our
simplifier outsmarts this by taking these "not quite right"
expressions, and simplifying them into other expressions or walking
through phis, etc. In the past, we've sometimes been able to find
leaders for these expressions, incorrectly.
This change causes us to not to try to phi of ops such expressions.
We determine safety by seeing if they depend on a phi node in our
block.
This is not perfect, we can do a bit better, but this should be a
"correctness start" that we can then improve. It also requires a
bunch of caching that i'll eventually like to eliminate.
The right solution, longer term, to the simplifier issues, is to make
the query interface for the instruction simplifier/constant folder
have the flags we need, so that we can keep most things going, but
turn off the possibly-invalid parts (threading through phis, etc).
This is an issue in another wrong code bug as well.
Reviewers: davide, mcrosier
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37175
llvm-svn: 312401
If getHexUint reads in a hex 0, it will create an APInt with a value of 0.
The number of active bits on this APInt is used to calculate the bitwidth of
Result. The number of active bits is defined as an APInt's bitwidth - its
number of leading 0s. Since this APInt is 0, its bitwidth and number of leading
0s are equal.
Thus, Result is constructed with a bitwidth of 0, triggering an APInt assert.
This commit fixes that by checking if the APInt is equal to 0, and setting the
bitwidth to 32 if it is. Otherwise, it sets the bitwidth using getActiveBits.
This caused issues when compiling MIR files with successor probabilities. In
the case that a successor is tagged with a probability of 0, this assert would
fire on debug builds.
https://reviews.llvm.org/D37401
llvm-svn: 312387
This patch teaches decomposeBitTestICmp to look through truncate instructions on the input to the compare. If a truncate is found it will now return the pre-truncated Value and appropriately extend the APInt mask.
This allows some code to be removed from InstSimplify that was doing this functionality.
This allows InstCombine's bit test combining code to match a pre-truncate Value with the same Value appear with an 'and' on another icmp. Or it allows us to combine a truncate to i16 and a truncate to i8. This also required removing the type check from the beginning of getMaskedTypeForICmpPair, but I believe that's ok because we still have to find two values from the input to each icmp that are equal before we'll do any transformation. So the type check was really just serving as an early out.
There was one user of decomposeBitTestICmp that didn't want to look through truncates, so I've added a flag to prevent that behavior when necessary.
Differential Revision: https://reviews.llvm.org/D37158
llvm-svn: 312382
This is limited to a set of patterns based on the example in PR34111:
https://bugs.llvm.org/show_bug.cgi?id=34111
...but as I was investigating this, I see that horizontal patterns can go wrong in many,
many other ways that would not be handled by this patch. Each data type may even go
different in the DAG after starting with the same basic IR pattern, so even proper IR
canonicalization won't fix it all.
Differential Revision: https://reviews.llvm.org/D37357
llvm-svn: 312379
We have llvm-readobj for dumping CodeView from object files, and
llvm-pdbutil has always been more focused on PDB. However,
llvm-pdbutil has a lot of useful options for summarizing debug
information in aggregate and presenting high level statistical
views. Furthermore, it's arguably better as a testing tool since
we don't have to write tests to conform to a state-machine like
structure where you match multiple lines in succession, each
depending on a previous match. llvm-pdbutil dumps much more
concisely, so it's possible to use single-line matches in many
cases where as with readobj tests you have to use multi-line
matches with an implicit state machine.
Because of this, I'm adding object file support to llvm-pdbutil.
In fact, this mirrors the cvdump tool from Microsoft, which also
supports both object files and pdb files. In the future we could
perhaps rename this tool llvm-cvutil.
In the meantime, this allows us to deep dive into object files
the same way we already can with PDB files.
llvm-svn: 312358
Previously this would sporadically crash as TargetType
was never initialized. We special-case the single-operand
case returning earlier and trying to mimic the behaviour of
isLegalAddressingMode as closely as possible.
Differential Revision: https://reviews.llvm.org/D37277
llvm-svn: 312357
Summary: When we backtranslate expressions, we can't use the predicateinfo, since we are evaluating them in a different context.
Reviewers: davide, mcrosier
Subscribers: sanjoy, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D37174
llvm-svn: 312352
A register in CodeGen can be marked as reserved: In that case we
consider the register always live and do not use (or rather ignore)
kill/dead/undef operand flags.
LiveIntervalAnalysis however tracks liveness per register unit (not per
register). We already needed adjustments for this in r292871 to deal
with super/sub registers. However I did not look at aliased register
there. Looking at ARM:
FPSCR (regunits FPSCR, FPSCR~FPSCR_NZCV) aliases with FPSCR_NZCV
(regunits FPSCR_NZCV, FPSCR~FPSCR_NZCV) hence they share a register unit
(FPSCR~FPSCR_NZCV) that represents the aliased parts of the registers.
This shared register unit was previously considered non-reserved,
however given that we uses of the reserved FPSCR potentially violate
some rules (like uses without defs) we should make FPSCR~FPSCR_NZCV
reserved too and stop tracking liveness for it.
This patch:
- Defines a register unit as reserved when: At least for one root
register, the root register and all its super registers are reserved.
- Adjust LiveIntervals::computeRegUnitRange() for new reserved
definition.
- Add MachineRegisterInfo::isReservedRegUnit() to have a canonical way
of testing.
- Stop computing LiveRanges for reserved register units in HMEditor even
with UpdateFlags enabled.
- Skip verification of uses of reserved reg units in the machine
verifier (this usually didn't happen because there would be no cached
liverange but there is no guarantee for that and I would run into this
case before the HMEditor tweak, so may as well fix the verifier too).
Note that this should only affect ARMs FPSCR/FPSCR_NZCV registers today;
aliased registers are rarely used, the only other cases are hexagons
P0-P3/P3_0 and C8/USR pairs which are not mixing reserved/non-reserved
registers in an alias.
Differential Revision: https://reviews.llvm.org/D37356
llvm-svn: 312348