This swaps out the OpenMPDefaultClauseKind enum with a
llvm::omp::DefaultKind enum which is stored in OMPConstants.h.
This should not change any functionality.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D74513
This patch implements an almost complete handling of OpenMP
contexts/traits such that we can reuse most of the logic in Flang
through the OMPContext.{h,cpp} in llvm/Frontend/OpenMP.
All but construct SIMD specifiers, e.g., inbranch, and the device ISA
selector are define in `llvm/lib/Frontend/OpenMP/OMPKinds.def`. From
these definitions we generate the enum classes `TraitSet`,
`TraitSelector`, and `TraitProperty` as well as conversion and helper
functions in `llvm/lib/Frontend/OpenMP/OMPContext.{h,cpp}`.
The above enum classes are used in the parser, sema, and the AST
attribute. The latter is not a collection of multiple primitive variant
arguments that contain encodings via numbers and strings but instead a
tree that mirrors the `match` clause (see `struct OpenMPTraitInfo`).
The changes to the parser make it more forgiving when wrong syntax is
read and they also resulted in more specialized diagnostics. The tests
are updated and the core issues are detected as before. Here and
elsewhere this patch tries to be generic, thus we do not distinguish
what selector set, selector, or property is parsed except if they do
behave exceptionally, as for example `user={condition(EXPR)}` does.
The sema logic changed in two ways: First, the OMPDeclareVariantAttr
representation changed, as mentioned above, and the sema was adjusted to
work with the new `OpenMPTraitInfo`. Second, the matching and scoring
logic moved into `OMPContext.{h,cpp}`. It is implemented on a flat
representation of the `match` clause that is not tied to clang.
`OpenMPTraitInfo` provides a method to generate this flat structure (see
`struct VariantMatchInfo`) by computing integer score values and boolean
user conditions from the `clang::Expr` we keep for them.
The OpenMP context is now an explicit object (see `struct OMPContext`).
This is in anticipation of construct traits that need to be tracked. The
OpenMP context, as well as the `VariantMatchInfo`, are basically made up
of a set of active or respectively required traits, e.g., 'host', and an
ordered container of constructs which allows duplication. Matching and
scoring is kept as generic as possible to allow easy extension in the
future.
---
Test changes:
The messages checked in `OpenMP/declare_variant_messages.{c,cpp}` have
been auto generated to match the new warnings and notes of the parser.
The "subset" checks were reversed causing the wrong version to be
picked. The tests have been adjusted to correct this.
We do not print scores if the user did not provide one.
We print spaces to make lists in the `match` clause more legible.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: merge_guards_bot, rampitec, mgorny, hiraditya, aheejin, fedor.sergeev, simoncook, bollu, guansong, dexonsmith, jfb, s.egerton, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71830
According to OpenMP 5.0, cancel and cancellation point constructs are
supported in taskloop directive. Added support for cancellation in
taskloop, master taskloop and parallel master taskloop.
This is a longstanding bug that seems to have been hidden by
a combination of (1) the normal flow being to deserialize the
interface before deserializing its parameter and (2) a precise
ordering of work that was apparently recently disturbed,
perhaps by my abstract-serialization work or Bruno's ObjC
module merging work.
Fixes rdar://59153545.
directive.
According to OpenMP 5.0, The atomic_default_mem_order clause specifies the default memory ordering behavior for atomic constructs that must be provided by an implementation. If the default memory ordering is specified as seq_cst, all atomic constructs on which memory-order-clause is not specified behave as if the seq_cst clause appears. If the default memory ordering is specified as relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the relaxed clause appears.
If the default memory ordering is specified as acq_rel, atomic constructs on which memory-order-clause is not specified behave as if the release clause appears if the atomic write or atomic update operation is specified, as if the acquire clause appears if the atomic read operation is specified, and as if the acq_rel clause appears if the atomic captured update operation is specified.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
There's going to be a lot of common code between RecordDecl and
CXXRecordDecl, factor out some of the logic in preparation for
adding the RecordDecl side.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
Partially reverts 0a2be46cfd as it turned
out to cause redundant module rebuilds in multi-process incremental builds.
When a module was getting out of date, all compilation processes started at the
same time were marking it as `ToBuild`. So each process was building the same
module instead of checking if it was built by someone else and using that
result. In addition to the work duplication, contention on the same .pcm file
wasn't making builds faster.
Note that for a single-process build this change would cause redundant module
reads and validations. But reading a module is faster than building it and
multi-process builds are more common than single-process. So I'm willing to
make such a trade-off.
rdar://problem/54395127
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D72860
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
Allow to build PCH's (with -building-pch-with-obj and the extra .o file)
with -fmodules-codegen -fmodules-debuginfo to allow emitting shared code
into the extra .o file, similarly to how it works with modules. A bit of
a misnomer, but the underlying functionality is the same. This saves up
to 20% of build time here.
Differential Revision: https://reviews.llvm.org/D69778
If a header contains 'extern template', then the template should be provided
somewhere by an explicit instantiation, so it is not necessary to generate
a copy. Worse, this can lead to an unresolved symbol, because the codegen's
object file will not actually contain functions from such a template
because of the GVA_AvailableExternally, but the object file for the explicit
instantiation will not contain them either because it will be blocked
by the information provided by the module.
Differential Revision: https://reviews.llvm.org/D69779
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
This removes the OpenMPProcBindClauseKind enum in favor of
llvm::omp::ProcBindKind which lives in OpenMPConstants.h and was
introduced in D70109.
No change in behavior is expected.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D70289
Summary:
Basic codegen for the declarations marked as nontemporal. Also, if the
base declaration in the member expression is marked as nontemporal,
lvalue for member decl access inherits nonteporal flag from the base
lvalue.
Reviewers: rjmccall, hfinkel, jdoerfert
Subscribers: guansong, arphaman, caomhin, kkwli0, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71708
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing another crash (added regression test).
Differential Revision: https://reviews.llvm.org/D41910
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing some crashes and warnings.
Differential Revision: https://reviews.llvm.org/D41910
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Phabricator: D41910
Similar motivations to the movement of ASTRecordReader:
AbstractBasicWriter.h already has quite a few dependencies,
and it's going to get pretty large as we generate more and more
into it. Meanwhile, most clients don't depend on this detail of
the implementation and shouldn't need to be recompiled.
I've also made OMPClauseWriter private, like it belongs.
AbstractBasicReader.h has quite a few dependencies already,
and that's only likely to increase. Meanwhile, ASTRecordReader
is really an implementation detail of the ASTReader that is only
used in a small number of places.
I've kept it in a public header for the use of projects like Swift
that might want to plug in to Clang's serialization framework.
I've also moved OMPClauseReader into an implementation file,
although it can't be made private because of friendship.
The basic technical design here is that we have three levels
of readers and writers:
- At the lowest level, there's a `Basic{Reader,Writer}` that knows
how to emit the basic structures of the AST. CRTP allows this to
be metaprogrammed so that the client only needs to support a handful
of primitive types (e.g. `uint64_t` and `IdentifierInfo*`) and more
complicated "inline" structures such as `DeclarationName` can just
be emitted in terms of those primitives.
In Clang's binary-serialization code, these are
`ASTRecord{Reader,Writer}`. For now, a large number of basic
structures are still emitted explicitly by code on those classes
rather than by either TableGen or CRTP metaprogramming, but I
expect to move more of these over.
- In the middle, there's a `Property{Reader,Writer}` which is
responsible for processing the properties of a larger object. The
object-level reader/writer asks the property-level reader/writer to
project out a particular property, yielding a basic reader/writer
which will be used to read/write the property's value, like so:
```
propertyWriter.find("count").writeUInt32(node->getCount());
```
Clang's binary-serialization code ignores this level (it uses
the basic reader/writer as the property reader/writer and has the
projection methods just return `*this`) and simply relies on the
roperties being read/written in a stable order.
- At the highest level, there's an object reader/writer (e.g.
`Type{Reader,Writer}` which emits a logical object with properties.
Think of this as writing something like a JSON dictionary literal.
I haven't introduced support for bitcode abbreviations yet --- it
turns out that there aren't any operative abbreviations for types
besides the QualType one --- but I do have some ideas of how they
should work. At any rate, they'll be necessary in order to handle
statements.
I'm sorry for not disentangling the patches that added basic and type
reader/writers; I made some effort to, but I ran out of energy after
disentangling a number of other patches from the work.
Negligible impact on module size, time to build a set of about 20
fairly large modules, or time to read a few declarations out of them.
There are three significant changes here:
- Most of the methods to read various embedded structures (`APInt`,
`NestedNameSpecifier`, `DeclarationName`, etc.) have been moved
from `ASTReader` to `ASTRecordReader`. This cleans up quite a
bit of code which was passing around `(F, Record, Idx)` arguments
everywhere or doing explicit indexing, and it nicely parallels
how it works on the writer side. It also sets us up to then move
most of these methods into the `BasicReader`s that I'm introducing
as part of abstract serialization.
As part of this, several of the top-level reader methods (e.g.
`readTypeRecord`) have been converted to use `ASTRecordReader`
internally, which is a nice readability improvement.
- I've standardized most of these method names on `readFoo` rather
than `ReadFoo` (used in some of the helper structures) or `GetFoo`
(used for some specific types for no apparent reason).
- I've changed a few of these methods to return their result instead
of reading into an argument passed by reference. This is partly
for general consistency and partly because it will make the
metaprogramming easier with abstract serialization.
This simplifies code where no extra details are required
Also don't write out detail when it is empty.
Differential Revision: https://reviews.llvm.org/D71347
Summary:
The new OpenMPConstants.h is a location for all OpenMP related constants
(and helpers) to live.
This patch moves the directives there (the enum OpenMPDirectiveKind) and
rewires Clang to use the new location.
Initially part of D69785.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: jholewinski, ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69853
function.
We need to perform unqualified lookups from the context of a defaulted
comparison, but not until we implicitly define the function, at which
point we can't do those lookups any more. So perform the lookup from the
end of the class containing the =default declaration and store the
lookup results on the defaulted function until we synthesize the body.
This commit sets the Self and Imp declarations for ObjC method declarations,
in addition to the definitions. It also fixes
a bunch of code in clang that had wrong assumptions about when getSelfDecl() would be set:
- CGDebugInfo::getObjCMethodName and AnalysisConsumer::getFunctionName would assume that it was
set for method declarations part of a protocol, which they never were,
and that self would be a Class type, which it isn't as it is id for a protocol.
Also use the Canonical Decl to index the set of Direct methods so that
when calls and implementations interleave, the same llvm::Function is
used and the same symbol name emitted.
Radar-Id: rdar://problem/57661767
Patch by: Pierre Habouzit
Differential Revision: https://reviews.llvm.org/D71091
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
Re-commit, after fixing some memory bugs.
Patch was reverted because https://bugs.llvm.org/show_bug.cgi?id=44048
The original patch is modified to set the strictfp IR attribute
explicitly in CodeGen instead of as a side effect of IRBuilder.
In the 2nd attempt to reapply there was a windows lit test fail, the
tests were fixed to use wildcard matching.
Differential Revision: https://reviews.llvm.org/D62731