either @dsym_test or @dwarf_test to be executed during the testsuite run. There are still lots of
Test*.py files which have not been decorated with the new decorator.
An example:
# From TestMyFirstWatchpoint.py ->
class HelloWatchpointTestCase(TestBase):
mydir = os.path.join("functionalities", "watchpoint", "hello_watchpoint")
@dsym_test
def test_hello_watchpoint_with_dsym_using_watchpoint_set(self):
"""Test a simple sequence of watchpoint creation and watchpoint hit."""
self.buildDsym(dictionary=self.d)
self.setTearDownCleanup(dictionary=self.d)
self.hello_watchpoint()
@dwarf_test
def test_hello_watchpoint_with_dwarf_using_watchpoint_set(self):
"""Test a simple sequence of watchpoint creation and watchpoint hit."""
self.buildDwarf(dictionary=self.d)
self.setTearDownCleanup(dictionary=self.d)
self.hello_watchpoint()
# Invocation ->
[17:50:14] johnny:/Volumes/data/lldb/svn/ToT/test $ ./dotest.py -N dsym -v -p TestMyFirstWatchpoint.py
LLDB build dir: /Volumes/data/lldb/svn/ToT/build/Debug
LLDB-137
Path: /Volumes/data/lldb/svn/ToT
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 154133
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 154109
Last Changed Date: 2012-04-05 10:43:02 -0700 (Thu, 05 Apr 2012)
Session logs for test failures/errors/unexpected successes will go into directory '2012-04-05-17_50_49'
Command invoked: python ./dotest.py -N dsym -v -p TestMyFirstWatchpoint.py
compilers=['clang']
Configuration: arch=x86_64 compiler=clang
----------------------------------------------------------------------
Collected 2 tests
1: test_hello_watchpoint_with_dsym_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... skipped 'dsym tests'
2: test_hello_watchpoint_with_dwarf_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
----------------------------------------------------------------------
Ran 2 tests in 1.138s
OK (skipped=1)
Session logs for test failures/errors/unexpected successes can be found in directory '2012-04-05-17_50_49'
[17:50:50] johnny:/Volumes/data/lldb/svn/ToT/test $
llvm-svn: 154154
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
This is the feature that allowed the user to have things like:
class Base { ... };
class Derived : public Base { ... };
and have formatters defined for Base work automatically for Derived.
This feature turned out to be too expensive since it requires completing types.
This patch takes care of removing cascading (other than typedefs chain cascading), updating the test suite accordingly, and adding required Cocoa class names to keep the AppKit formatters working
llvm-svn: 153272
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
This has been done for those summaries where the difference is only cosmetic (e.g. naming things as items instead of values, ...)
The LLDB output style has been preserved when it provides more information (e.g. telling the type as well as the value of an NSNumber)
Test cases have been updated to reflect the updated output style where necessary
llvm-svn: 152592
std::string has a summary provider
std::vector std::list and std::map have both a summary and a synthetic children provider
Given the usage of a custom namespace (std::__1::classname) for the implementation of libc++, we keep both libstdcpp and libc++ formatters enabled at the same time since that raises no conflicts and enabled for seamless transition between the two
The formatters for libc++ reside in a libcxx category, and are loaded from libcxx.py (to be found in examples/synthetic)
The formatters-stl test cases have been divided to be separate for libcxx and libstdcpp. This separation is necessary because
(a) we need different compiler flags for libc++ than for libstdcpp
(b) libc++ inlines a lot more than libstdcpp and some code changes were required to accommodate this difference
llvm-svn: 152570
expression command doesn't handle xmm or stmm registers...
o Update ClangASTContext::GetBuiltinTypeForEncodingAndBitSize() to now handle eEncodingVector.
o Modify RegisterValue::SetFromMemoryData() to fix the subtle error due to unitialized variables.
o Add a test file for "expr $xmm0".
llvm-svn: 152190
fixed a few potential NULL-pointer derefs in ValueObject
we have a way to provide docstrings for properties we add to the SWIG layer - a few of these properties have a docstring already, more will come in future commits
added a new bunch of properties to SBData to make it more natural and Python-like to access the data they contain
llvm-svn: 151962
(b) fixes and improvements to the formatters for NSDate and NSString
(c) adding an introspection formatter for NSCountedSet
(d) making the Objective-C formatters test cases pass on both 64 and 32 bit
one of the test cases is marked as expected failure on i386 - support needs to be added to the LLDB core for it to pass
llvm-svn: 151826
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
a) adds a Python summary provider for NSDate
b) changes the initialization for ScriptInterpreter so that we are not passing a bulk of Python-specific function pointers around
c) provides a new ScriptInterpreterObject class that allows for ref-count safe wrapping of scripting objects on the C++ side
d) contains much needed performance improvements:
1) the pointer to the Python function generating a scripted summary is now cached instead of looked up every time
2) redundant memory reads in the Python ObjC runtime wrapper are eliminated
3) summaries now use the m_summary_str in ValueObject to store their data instead of passing around ( == copying) an std::string object
e) contains other minor fixes, such as adding descriptive error messages for some cases of summary generation failure
llvm-svn: 151703
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151301
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151299
Adding new API calls to SBValue to be able to retrieve the associated formatters
Some refactoring to FormatNavigator::Get() in order to shrink its size down to more manageable terms (a future, massive, refactoring effort will still be needed)
Test cases added for the above
llvm-svn: 150784
DataExtractor::Dump() needs to supply the correct cursor when delegating to the child DataExtractor::Dump() calls.
Add a regression test file.
rdar://problem/10872908
llvm-svn: 150729
with subcommand 'expression' and 'variable'. The first subcommand is for supplying an expression to
be evaluated into an address to watch for, while the second is for watching a variable.
'watchpoint set expression' is a raw command, which means that you need to use the "--" option terminator
to end the '-w' or '-x' option processing and to start typing your expression.
Also update several test cases to comply and add a couple of test cases into TestCompletion.py,
in particular, test that 'watchpoint set ex' completes to 'watchpoint set expression ' and that
'watchpoint set var' completes to 'watchpoint set variable '.
llvm-svn: 150109
the '-e' option (for watching of an address) to be present.
Update some existing test cases with the required option and add some more test cases.
Since the '-v' option takes <variable-name> and the '-e' option takes <expr> as the command arg,
the existing infrastructure for generating the option usage can produce confusing help message,
like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
The solution adopted is to provide an extra member field to the struct CommandArgumentData called
(uint32_t)arg_opt_set_association, whose purpose is to link this particular argument data with some
option set(s). Also modify the signature of CommandObject::GetFormattedCommandArguments() to:
GetFormattedCommandArguments (Stream &str, uint32_t opt_set_mask = LLDB_OPT_SET_ALL)
it now takes an additional opt_set_mask which can be used to generate a filtered formatted command
args for help message.
Options::GenerateOptionUsage() impl is modified to call the GetFormattedCommandArguments() appropriately.
So that the help message now looks like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name>
rdar://problem/10703256
llvm-svn: 150032
When used in conjunction with --inline-children, this option will cause the names of the values to be omitted from the output. This can be beneficial in cases such as vFloat, where it will compact the representation from
([0]=1,[1]=2,[2]=3,[3]=4) to (1, 2, 3, 4).
Added a test case to check that the new option works correctly.
Also took some time to revisit SummaryFormat and related classes and tweak them for added readability and maintainability.
Finally, added a new class name to which the std::string summary should be applied.
llvm-svn: 149644
should use Target::ReadMemory() call to read from the file section offset address.
Also remove the @expectedFailure decorator..
'target variable' command fails if the target program has been run
rdar://problem/9763907
llvm-svn: 149629