For x86-64 the REX.w prefix takes precedence over any other size
override (i.e. 0x66). Therefore, for x86-64 when REX.w is present set
'hasOpSize' to false to ensure that any size override is ignored.
Fixes PR48901.
Differential Revision: https://reviews.llvm.org/D95682
These instructions read their inputs from fixed registers rather
than using a modrm byte. We shouldn't require the user to list them
when parsing assembly. This matches the GNU assembler.
This patch adds InstAliases so we can accept either form. It also
changes the printing code to use the form without registers. This
will change the behavior of llvm-objdump, but should be consistent
with binutils objdump. This also matches what we already do in LLVM for
clzero and monitorx which also used fixed registers.
I need to add and improve tests before this can be commited. The
disassembler tests exist, but weren't checking the fixed register
so they pass before and after this change.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1216
Differential Revision: https://reviews.llvm.org/D93524
This patch mainly made the following changes:
1. Support AVX-VNNI instructions;
2. Introduce ExplicitVEXPrefix flag so that vpdpbusd/vpdpbusds/vpdpbusds/vpdpbusds instructions only use vex-encoding when user explicity add {vex} prefix.
Differential Revision: https://reviews.llvm.org/D89105
The 0xf3 prefix has been defined as wbnoinvd on Icelake Server. So
the prefix isn't ignored by the CPU. AMD documentation suggests that
wbnoinvd is treated as wbinvd on older processors. Intel documentation
is not clear. Perhaps 0xf2 and 0x66 are treated the same, but its
not documented.
This patch changes TB to PS in the td file so 0xf2 and 0x66 will
be treated as errors. This matches versions of objdump after
wbnoinvd was added.
Key Locker provides a mechanism to encrypt and decrypt data with an AES key without having access
to the raw key value by converting AES keys into “handles”. These handles can be used to perform the
same encryption and decryption operations as the original AES keys, but they only work on the current
system and only until they are revoked. If software revokes Key Locker handles (e.g., on a reboot),
then any previous handles can no longer be used.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88398
We were missing the modrm byte this instruction has according
to current Intel SDM. Experiments with gcc indicate that different
modrm values are chosen based on 2 operands so I've added those
as well.
I think our previous implementation was based on an older behavior of
binutils that has since been changed.
These are documented as using modrm byte of 0xe8, 0xf0, and 0xf8
respectively. But hardware ignore bits 2:0. So 0xe9-0xef is treated
the same as 0xe8. Similar for the other two.
Fixing this required adding 8 new formats to the X86 instructions
to convey this information. Could have gotten away with 3, but
adding all 8 made for a more logical conversion from format to
modrm encoding.
I renumbered the format encodings to keep the register modrm
formats grouped together.
We require d/q suffixes on the memory form of these instructions to disambiguate the memory size.
We don't require it on the register forms, but need to support parsing both with and without it.
Previously we always printed the d/q suffix on the register forms, but it's redundant and
inconsistent with gcc and objdump.
After this patch we should support the d/q for parsing, but not print it when its unneeded.
llvm-svn: 360085
All of these instructions consume one encoded register and the other register is %st. They either write the result to %st or the encoded register. Previously we printed both arguments when the encoded register was written. And we printed one argument when the result was written to %st. For the stack popping forms the encoded register is always the destination and we didn't print both operands. This was inconsistent with gcc and objdump and just makes the output assembly code harder to read.
This patch changes things to always print both operands making us consistent with gcc and objdump. The parser should still be able to handle the single register forms just as it did before. This also matches the GNU assembler behavior.
llvm-svn: 353061
Looking into gcc and objdump behavior more this was overly aggressive. If the register is encoded in the instruction we should print %st(0), if its implicit we should print %st.
I'll be making a more directed change in a future patch.
llvm-svn: 353013
Summary:
When calculating clobbers for MS style inline assembly we fail if the asm clobbers stack top because we print st(0) and try to pass it through the gcc register name check. This was found with when I attempted to make a emms/femms clobber all ST registers. If you use emms/femms in MS inline asm we would try to use st(0) as the clobber name but clang would think that wasn't a valid clobber name.
This also matches what objdump disassembly prints. It's also what is printed by gcc -S.
Reviewers: RKSimon, rnk, efriedma, spatel, andreadb, lebedev.ri
Reviewed By: rnk
Subscribers: eraman, gbedwell, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D57621
llvm-svn: 352985
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.
This patch makes us recognize them for the disassembler to match objdump.
llvm-svn: 343614
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Summary:
If LOCK prefix is not the first prefix in an instruction, LLVM
disassembler silently drops the prefix.
The fix is to select a proper instruction with a builtin LOCK prefix if
one exists.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49001
llvm-svn: 336400
The %eiz/%riz are dummy registers that force the encoder to emit a SIB byte when it normally wouldn't. By emitting them in the disassembly output we ensure that assembling the disassembler output would also produce a SIB byte.
This should match the behavior of objdump from binutils.
llvm-svn: 335768
These encodings correspond to the cases in the normal encoding scheme where there is no index and our modrm reading code initially decodes it as such. The VSIB handling code tried to compensate for this, but failed to add the base needed to make later code do the right thing.
Fixes PR37712.
llvm-svn: 334121
A 5-bit value can occur when EVEX.X is 0 due to it being used to extend modrm.rm to encode XMM16-31. But if modrm.rm instead encodes a GPR, the Intel documentation says EVEX.X should be ignored so just mask it to 4 bits once we know its a GPR.
llvm-svn: 333725
EVEX.X is used to extended modrm.rm when the instruction encodes a XMM/YMM/ZMM register. But we aren't properly ignoring it when it encodes a GPR and we end up printing whatever registers exist in X86 register enum after the GPRs.
llvm-svn: 333724
This was an accidental side effect of EVEX.X being used to encode XMM16-XMM31 using modrm.rm with modrm.mod==0x3.
I think there are still more bugs related to this.
llvm-svn: 333722
Summary:
and use the -msgx flag as a requirement
for the SGX instructions.
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D46436
llvm-svn: 331742
Previously for instructions like fxsave we would print "opaque ptr" as part of the memory operand. Now we print nothing.
We also no longer accept "opaque ptr" in the parser. We still accept any size to be specified for these instructions, but we may want to consider only parsing when no explicit size is specified. This what gas does.
llvm-svn: 331243
This allows the instruction selection to follow mode in Intel syntax. And allows a suffix to be used to change size.
This matches gas behavior from what I could tell.
llvm-svn: 331138
This encoding is recognized by the CPU, but the behavior is undefined. This makes the disassembler handle it correctly so we don't print bswapl with a 16-bit register.
llvm-svn: 330682
This demonstrates a bug where the encoding for a 16-bit bswap prints a 16-bit register and a 32-bit mnemonic. Intel docs say 16-bit bswap is undefined. We should either claim it as an invalid encoding or we should print a 16-bit mnemonic.
objdump does print the encoding as bswap with a 16-bit register. But it doesn't seem to ever print a suffix.
llvm-svn: 330621
Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462