- Made the dynamic register context for the GDB remote plug-in inherit from the generic DynamicRegisterInfo to avoid code duplication
- Finished up the target definition python setting stuff.
- Added a new "slice" key/value pair that can specify that a register is part of another register:
{ 'name':'eax', 'set':0, 'bitsize':32, 'encoding':eEncodingUint, 'format':eFormatHex, 'slice': 'rax[31:0]' },
- Added a new "composite" key/value pair that can specify that a register is made up of two or more registers:
{ 'name':'d0', 'set':0, 'bitsize':64 , 'encoding':eEncodingIEEE754, 'format':eFormatFloat, 'composite': ['s1', 's0'] },
- Added a new "invalidate-regs" key/value pair for when a register is modified, it can invalidate other registers:
{ 'name':'cpsr', 'set':0, 'bitsize':32 , 'encoding':eEncodingUint, 'format':eFormatHex, 'invalidate-regs': ['r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15']},
This now completes the feature that allows a GDB remote target to completely describe itself.
llvm-svn: 192858
Added logging for the OS plug-in python objects in OperatingSystemPython so we can see the python dictionary returned from the plug-in when logging is enabled.
llvm-svn: 182530
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
Added code the initialize the register context in the OperatingSystemPython plug-in with the new PythonData classes, and added a test OperatingSystemPython module in lldb/examples/python/operating_system.py that we can use for testing.
llvm-svn: 162530