Various masks on shufflevector instructions are recognizable as
specific PowerPC instructions (vector pack, vector merge, etc.).
There is existing code in PPCISelLowering.cpp to recognize the correct
patterns for big endian code. The masks for these instructions are
different for little endian code due to the big-endian numbering
employed by these instructions. This patch adds the recognition code
for little endian.
I've added a new test case test/CodeGen/PowerPC/vec_shuffle_le.ll for
this. The existing recognizer test (vec_shuffle.ll) is unnecessarily
verbose and difficult to read, so I felt it was better to add a new
test rather than modify the old one.
llvm-svn: 210536
Clang's lit cfg already detects the currently selected SDK via
"xcrun --show-sdk-path". The same thing should be done for compiler-rt tests,
to make them work on recent OS X versions. Instead of duplicating the detection
code, this patch extracts the detection function into a lit.util method.
Patch by Kuba Brecka (kuba.brecka@gmail.com),
reviewed at http://reviews.llvm.org/D4072
llvm-svn: 210534
inverted condition codes (CINC, CINV, CNEG, CSET, and CSETM).
Matching aliases based on "immediate classes", when disassembling,
wasn't previously supported, hence adding MCOperandPredicate
into class Operand, and implementing the support for it
in AsmWriterEmitter.
The parsing for those aliases was already custom, so just adding
the missing condition into AArch64AsmParser::parseCondCode.
llvm-svn: 210528
As Ana Pazos pointed out, these have to be restored to their incoming values
before a function returns; i.e. before the tail call. So they can't be used
correctly as the destination register.
llvm-svn: 210525
The C++ and C semantics of the compare_and_swap operations actually
require us to return a boolean "success" value. In LLVM terms this
means a second comparison of the output of "cmpxchg" against the input
desired value.
However, x86's "cmpxchg" instruction sets all flags for the comparison
formed, so we can skip any secondary comparison. (N.b. this isn't true
for cmpxchg8b/16b, which only set ZF).
rdar://problem/13201607
llvm-svn: 210523
Previously we were abandonning the attempt, leading to some combination of
extra work (when selection of a load/store fails completely) and inferior code
(when this leads to a real memcpy call instead of inlining).
rdar://problem/17187463
llvm-svn: 210520
We were hitting an assert if FastISel couldn't create the load or store we
requested. Currently this happens for large frame-local addresses, though
CodeGen could be improved there.
rdar://problem/17187463
llvm-svn: 210519
Diagnostic mappings are used to calculate the final severity of diagnostic
instances.
Detangle the implementation to reflect the terminology used in documentation
and bindings.
No change in functionality.
llvm-svn: 210518
Doing so would be inconsistent with the common fallback case where backend
diagnostics without source locations are emitted unconditionally.
llvm-svn: 210515
Anyone enabling this warning would expect to hear about all occurrences
including those in system headers that can cause non-reproducible builds.
To achieve this, rework ShowInSystemHeader to remove broken unused mapping code
that didn't make sense with a simpler and correct scheme.
llvm-svn: 210512
We would previously assert if the initializer was dependent. I also think that
checking isConstantInitializer is more correct here than checkInitIsICE.
llvm-svn: 210505
This improves the X86 cost model for small constants with large types. Before
this commit we would even hoist trivial constants such as i96 2.
This is related to <rdar://problem/17070936>
llvm-svn: 210504
It turns out the trailing '=' really is part of the option name spelling and
treating it as such gets us compatible with GCC's -Werror= and pragmas.
(GCC doesn't appear to support any -Wno- form for this diagnostic but we do.)
llvm-svn: 210503
will never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
llvm-svn: 210498
never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
llvm-svn: 210497
Unfortunately there's no way to elegantly do this with pre-canned
algorithms. Using a generating iterator doesn't work because you default
construct for each element, then move construct into the actual slot
(bad for copy but non-movable types, and a little unneeded overhead even
in the move-only case), so just write it out manually.
This solution isn't exception safe (if one of the element's ctors calls
we don't fall back, destroy the constructed elements, and throw on -
which std::uninitialized_fill does do) but SmallVector (and LLVM) isn't
exception safe anyway.
llvm-svn: 210495
The code in PPCTargetLowering::PerformDAGCombine() that handles
unaligned Altivec vector loads generates a lvsl followed by a vperm.
As we've seen in numerous other places, the vperm instruction has a
big-endian bias, and this is fixed for little endian by complementing
the permute control vector and swapping the input operands. In this
case the lvsl is providing the permute control vector. Rather than
generating an lvsl and a complement operation, it is sufficient to
generate an lvsr instruction instead. Thus for LE code generation we
will generate an lvsr rather than an lvsl, and swap the other input
arguments on the vperm.
The existing test/CodeGen/PowerPC/vec_misalign.ll is updated to test
the code generation for PPC64 and PPC64LE, in addition to the existing
PPC32/G5 testing.
llvm-svn: 210493
Don't terminate location ranges for register-described variables
at the end of machine basic block if this register is never modified
in the function body, except for the prologue and epilogue. Prologue
location is guessed by FrameSetup flags on MachineInstructions, while
epilogue location is deduced from debug locations of instructions
in the basic blocks ending with return instructions.
This patch is mostly targeted to fix non-trivial debug locations for
variables addressed via stack and frame pointers.
It is not really a generic fix. We can still produce poor debug info
for register-described variables if this register *is* modified somewhere
in the function, but in unrelated places. This might be the case for the debug
info in optimized binaries (e.g. for local variables in inlined functions).
LiveDebugVariables pass in CodeGen attempts to fix this problem by adjusting
DBG_VALUE instructions, but this pass is tied to greedy register allocator,
which is used in optimized builds only. Proper fix would likely involve
generalizing LiveDebugVariables to all register allocators. See more discussion
in http://reviews.llvm.org/D3933 review thread.
I'm proceeding with this patch to fix immediate severe problems and
important cases, e.g. fix completely broken debug info with AddressSanitizer
and fix PR19307 (missing debug info for by-value std::string arguments).
llvm-svn: 210492