to turn off warning on those properties which follow Cocoa naming
convention for retaining objects and yet they were not meant for
such purposes. Also, perform consistancy checking for declared
getters of such methods. // rdar://9636091
llvm-svn: 133849
they should still be officially __strong for the purposes of errors,
block capture, etc. Make a new bit on variables, isARCPseudoStrong(),
and set this for 'self' and these enumeration-loop variables. Change
the code that was looking for the old patterns to look for this bit,
and change IR generation to find this bit and treat the resulting
variable as __unsafe_unretained for the purposes of init/destroy in
the two places it can come up.
llvm-svn: 133243
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
There are APIs, e.g. [NSValue valueWithBytes:objCType:], which use the encoding to find out
the size of an object pointed to by a pointer. Make things safer by making it illegal to @encode
incomplete types.
llvm-svn: 131364
bit by allowing __weak and __strong to be added/dropped as part of
implicit conversions (qualification conversions in C++). A little
history: GCC lets one add/remove/change GC qualifiers just about
anywhere, implicitly. Clang did roughly the same before, but we
recently normalized the semantics of qualifiers across the board to
get a semantics that we could reason about (yay). Unfortunately, this
tightened the screws a bit too much for GC qualifiers, where it's
common to add/remove these qualifiers at will.
Overall, we're still in better shape than we were before: we don't
permit directly changing the GC qualifier (e.g., __weak -> __strong),
so type safety is improved. More importantly, we're internally
consistent in our handling of qualifiers, and the logic that allows
adding/removing GC qualifiers (but not adding/removing address
spaces!) only touches two obvious places.
Fixes <rdar://problem/9402499>.
llvm-svn: 131065
invalid expression rather than the far-more-generic "error". Fixes a
mild regression in error recovery uncovered by the GCC testsuite.
llvm-svn: 130128
-Wwrite-strings. First and foremost, once the positive form of the flag
was passed, it could never be disabled by passing -Wno-write-strings.
Also, the diagnostic engine couldn't in turn use -Wwrite-strings to
control diagnostics (as GCC does) because it was essentially hijacked to
drive the language semantics.
Fix this by giving CC1 a clean '-fconst-strings' flag to enable
const-qualified strings in C and ObjC compilations. Corresponding
'-fno-const-strings' is also added. Then the driver is taught to
introduce '-fconst-strings' in the CC1 command when '-Wwrite-strings'
dominates.
This entire flag is basically GCC-bug-compatibility driven, so we also
match GCC's bug where '-w' doesn't actually disable -Wwrite-strings. I'm
open to changing this though as it seems insane.
llvm-svn: 130051
ObjC NeXt runtime where method pointer registered in
metadata belongs to an unrelated method. Ast part of this fix,
I turned at @end missing warning (for class
implementations) into an error as we can never
be sure that meta-data being generated is correct.
// rdar://9072317
llvm-svn: 130019
definitely have a path leading to them, and possibly have a path leading
to them; reflect that distinction in the warning text emitted.
llvm-svn: 129126
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
declaration as this results in a confusing error message,
instead of message related to missing property declaration.
// rdar://9106929
llvm-svn: 127682
diagnostic. Also, these attributes are commonly written with macros which we
actually pre-define, so instead of expanding the macro location, refer to the
instantiation location and name it using the macro loc.
llvm-svn: 127219
that was ignored in a few places (most notably, code
completion). Introduce Selector::getNameForSlot() for the common case
where we only care about the name. Audit all uses of
getIdentifierInfoForSlot(), switching many over to getNameForSlot(),
fixing a few crashers.
Fixed <rdar://problem/8939352>, a code-completion crasher.
llvm-svn: 125977
Warn if class for a deprecated class is implemented.
Warn if category for a deprecated class is implemented.
All under control of -Wdeprecated-implementations.
// rdar://8973810.
llvm-svn: 125545
is unqualified but its initialized is qualified.
This is for c only and fixes the imm. problem.
c++ is more involved and is wip.
// rdar://8979379
llvm-svn: 125386
when selector metadata is generated, which is triggered
by at least on class implementation. This is to match gcc's
behavior. // rdar://8851684.
llvm-svn: 124909
The rationale is that it is highly likely that the user's getter/setter isn't atomically implemented. Off by default.
Addresses rdar://8782645.
-Wcustom-atomic-properties and -Wimplicit-atomic-properties are under the -Watomic-properties group.
llvm-svn: 124609
error: no super class declared in @interface for 'XXX'
to be:
error: 'X' cannot use 'super' because it is a root class
The latter explains what the user actually did wrong.
Fixes: <rdar://problem/8904409>
llvm-svn: 124074
earlier revisions Clang was incorrectly warning
about an incomplete @implementation when a property
was getting synthesized. This got fixed somewhere
down the line.
llvm-svn: 123939
to allow us to explicitly control whether or
not Objective-C properties are default synthesized.
Currently this feature only works when using
the -fobjc-non-fragile-abi2 flag (so there is
no functionality change), but we can now turn
off this feature without turning off all the features
coupled with -fobjc-non-fragile-abi2.
llvm-svn: 122519
unknown type and there is a possibility that
at runtime method is resolved to a deprecated or
unavailable method. Addreses // rdar://8769853
llvm-svn: 122294
declared setter or getter in current class extension or one
of the other class extensions. Mark them as synthesized as
property will be synthesized when property with same name is
seen in the @implementation. This prevents bogus warning
about unimplemented methods to be issued for these methods.
Fixes // rdar://8747333
llvm-svn: 121597
@property declaration to the autogenerated methods. I'm uncertain
whether this should apply to attributes in general, but these are
a reasonable core.
Implements rdar://problem/8617301
llvm-svn: 118676
is that we need more information to decide the exact conditions for whether
one ObjCObjectPointer is an acceptable return/parameter override for another,
so we're going to disable that entire class of warning for now. The
"forward developement" warning category, -Wmethod-signatures, can receive
unrestricted feature work, and when we're happy with how it acts, we'll
turn it on by default.
This is a pretty conservative change, and nobody's totally content with it.
llvm-svn: 117524
covariant/contravariant overrides and implementations, but do so under
control of a new flag (-Wno-objc-covariant-overrides, which yes does cover
contravariance too).
*At least* the covariance cases will probably be enabled by default shortly,
but that's not totally uncontroversial.
llvm-svn: 117346
A common idiom in Objective-C is to provide a definition of a method in a subclass that returns a more-specified version of an object than the superclass. This does not violate the principle of substitutability, because you can always use the object returned by the subclass anywhere that you could use the type returned by the superclass. It was, however, generating warnings with clang, leading people to believe that semantically correct code was incorrect and requiring less accurate type specification and explicit down-casts (neither of which is a good thing to encourage).
This change ensures that any method definition has parameter and return types that make it accept anything that something conforming to the declaration may pass and return something that the caller will expect, but allows stricter definitions.
llvm-svn: 117271
declaration have the 'readwrite' attribute. This is a common case, and we can issue a more lucid diagnostic.
Fixes <rdar://problem/7629420>.
llvm-svn: 117045
don't repeatedly loop through identifiers, correcting the same typo'd
identifier over and over again.
We still bail out after 20 typo corrections, but this should help
improve performance in the common case where we're typo-correcting
because the user forgot to include a header.
llvm-svn: 116901
we did was an acceptable lookup. If it is, then we can re-use that
lookup result. If it isn't, we have to perform the lookup again. This
is almost surely the cause behind the mysterious typo.m failures on
some builders; we were getting the wrong lookup results returned.
llvm-svn: 116586
identifiers to determine good typo-correction candidates. Once we've
identified those candidates, we perform name lookup on each of them
and the consider the results.
This optimization makes typo correction > 2x faster on a benchmark
example using a single typo (NSstring) in a tiny file that includes
Cocoa.h from a precompiled header, since we are deserializing far less
information now during typo correction.
There is a semantic change here, which is interesting. The presence of
a similarly-named entity that is not visible can now affect typo
correction. This is both good (you won't get weird corrections if the
thing you wanted isn't in scope) and bad (you won't get good
corrections if there is a similarly-named-but-completely-unrelated
thing). Time will tell whether it was a good choice or not.
llvm-svn: 116528
properties.
1. Generates the AST for lexical info. of accessing
getter/setter methods using dot-syntax notation.
This fixes //rdar: //8528170.
2. Modifes rewriter to handle the AST putout in 1.
3. Supportes in rewriter ObjCImplicitSetterGetter ASTs.
llvm-svn: 116237
one declared in class's extension and not one declared
in class's superclass. This supresses a bogus warning on
method type mismatch.
Fixes //rdar: // 8530080
llvm-svn: 116118
(on functions with no pointer arguments) but only when
the attribute has not been coming from a macro
instantiation in a header file. Fixes first part
of radar 6857843.
llvm-svn: 114860
of a binary expression, continue on and parse the right-hand side of
the binary expression anyway, but don't call the semantic actions to
type-check. Previously, we would see the error and then, effectively,
skip tokens until the end of the statement.
The result should be more useful recovery, both in the normal case
(we'll actually see errors beyond the first one in a statement), but
it also helps code completion do a much better job, because we do
"real" code completion on the right-hand side of an invalid binary
expression rather than completing with the recovery completion. For
example, given
x = p->y
if there is no variable named "x", we can still complete after the p->
as a member expression. Along the recovery path, we would have
completed after the "->" as if we were in an expression context, which
is mostly useless.
llvm-svn: 114225
previous use of a synthesized 'ivar' with property of same name
declared as @dynamic. In this case, 'ivar' is in the
inherited class and no diagnostics should be issued.
llvm-svn: 111940
GCC emits a warning instead of an error when using an unavailable Objective-C protocol, so now
Clang's behavior is more strict in this case, but more consistent. We will need to see how much
this fires on real code and determine whether this case should be downgraded to a warning.
Fixes <rdar://problem/8213093>.
llvm-svn: 109033
the test case right (for the noreturn warning) because the CFG
doesn't support @try yet, but the test case is now present when
we do properly implement CFG support for @try...@catch.
llvm-svn: 107203
unimplemented property warning for properties
coming from class's conformin protocol. It also
simplifies the algorithm in the process.
Fixes radar 8035776.
llvm-svn: 107174
(-Wunused-exception-parameter) than normal variables, since it's more
common to name and then ignore an exception parameter. This warning is
neither enabled by default nor by -Wall. Fixes <rdar://problem/7931045>.
llvm-svn: 102931
(which is ill-formed) with an initializer list. Also, change the
fallback from an assertion to a generic error message, which is far
friendlier. Fixes <rdar://problem/7730948>.
llvm-svn: 102930
conforms to a protocol as one of its super classes does. This is because
conforming super class will implement the property. This implements
new warning rules for unimplemented properties (radar 7884086).
llvm-svn: 102919
function-parameter checking and splitting it into the normal
ActOn*/Build* pair in Sema. We now use VarDecl to represent the @catch
parameter rather than the ill-fitting ParmVarDecl.
llvm-svn: 102347
method parameter, provide a note pointing at the parameter itself so
the user does not have to manually look for the function/method being
called and match up parameters to arguments. For example, we now get:
t.c:4:5: warning: incompatible pointer types passing 'long *' to
parameter of
type 'int *' [-pedantic]
f(long_ptr);
^~~~~~~~
t.c:1:13: note: passing argument to parameter 'x' here
void f(int *x);
^
llvm-svn: 102038
sends. Major changes include:
- Expanded the interface from two actions (ActOnInstanceMessage,
ActOnClassMessage), where ActOnClassMessage also handled sends to
"super" by checking whether the identifier was "super", to three
actions (ActOnInstanceMessage, ActOnClassMessage,
ActOnSuperMessage). Code completion has the same changes.
- The parser now resolves the type to which we are sending a class
message, so ActOnClassMessage now accepts a TypeTy* (rather than
an IdentifierInfo *). This opens the door to more interesting
types (for Objective-C++ support).
- Split ActOnInstanceMessage and ActOnClassMessage into parser
action functions (with their original names) and semantic
functions (BuildInstanceMessage and BuildClassMessage,
respectively). At present, this split is onyl used by
ActOnSuperMessage, which decides which kind of super message it
has and forwards to the appropriate Build*Message. In the future,
Build*Message will be used by template instantiation.
- Use getObjCMessageKind() within the disambiguation of Objective-C
message sends vs. array designators.
Two notes about substandard bits in this patch:
- There is some redundancy in the code in ParseObjCMessageExpr and
ParseInitializerWithPotentialDesignator; this will be addressed
shortly by centralizing the mapping from identifiers to type names
for the message receiver.
- There is some #if 0'd code that won't likely ever be used---it
handles the use of 'super' in methods whose class does not have a
superclass---but could be used to model GCC's behavior more
closely. This code will die in my next check-in, but I want it in
Subversion.
llvm-svn: 102021
LookupInObjCMethod. Doing so allows all sorts of invalid code
to slip through to codegen. This patch does not change the
AST representation of super, though that would now be a natural
thing to do since it can only be in the receiver position and
in the base of a ObjCPropertyRefExpr.
There are still several ugly areas handling super in the parser,
but this is definitely a step in the right direction.
llvm-svn: 100959
destination type for initialization, assignment, parameter-passing,
etc. The main issue fixed here is that we used rather confusing
wording for diagnostics such as
t.c:2:9: warning: initializing 'char const [2]' discards qualifiers,
expected 'char *' [-pedantic]
char *name = __func__;
^ ~~~~~~~~
We're not initializing a 'char const [2]', we're initializing a 'char
*' with an expression of type 'char const [2]'. Similar problems
existed for other diagnostics in this area, so I've normalized them all
with more precise descriptive text to say what we're
initializing/converting/assigning/etc. from and to. The warning for
the code above is now:
t.c:2:9: warning: initializing 'char *' from an expression of type
'char const [2]' discards qualifiers [-pedantic]
char *name = __func__;
^ ~~~~~~~~
Fixes <rdar://problem/7447179>.
llvm-svn: 100832