Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
This patch corresponds to review:
http://reviews.llvm.org/D20239
It adds exploitation of XXINSERTW and XXEXTRACTUW instructions that
are useful in some cases for inserting and extracting vector elements of
v4[if]32 vectors.
llvm-svn: 275215
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
This patch corresponds to review:
http://reviews.llvm.org/D20443
It changes the legalization strategy for illegal vector types from integer
promotion to widening. This only applies for vectors with elements of width
that is a multiple of a byte since we have hardware support for vectors with
1, 2, 3, 8 and 16 byte elements.
Integer promotion for vectors is quite expensive on PPC due to the sequence
of breaking apart the vector, extending the elements and reconstituting the
vector. Two of these operations are expensive.
This patch causes between minor and major improvements in performance on most
benchmarks. There are very few benchmarks whose performance regresses. These
regressions can be handled in a subsequent patch with a DAG combine (similar
to how this patch handles int -> fp conversions of illegal vector types).
llvm-svn: 274535
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
We convert `Default` to `NotPIC` so that target independent code
can reason about this correctly.
Differential Revision: http://reviews.llvm.org/D21394
llvm-svn: 273024
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
While promoting nodes in PPCTargetLowering::DAGCombineExtBoolTrunc, it is
possible for one of the nodes to be replaced by another. To make sure we do not
visit the deleted nodes, and to make sure we visit the replacement nodes, use a
list of HandleSDNodes to track the to-be-promoted nodes during the promotion
process.
The same fix has been applied to the analogous code in
PPCTargetLowering::DAGCombineTruncBoolExt.
Fixes PR26985.
llvm-svn: 269272
This patch corresponds to review:
http://reviews.llvm.org/D19683
Simply adds the bits for being able to specify -mcpu=pwr9 to the back end.
llvm-svn: 268950
This patch fixes register alignment for long double type in
soft float mode. Before this patch alignment was 8 and this
patch changes it to 4.
Differential Revision: http://reviews.llvm.org/D18034
llvm-svn: 268909
This patch corresponds to review:
http://reviews.llvm.org/D18592
It allows the PPC back end to generate the xxspltw instruction where we
previously only emitted vspltw.
llvm-svn: 268516
print-stack-trace.cc test failure of compiler-rt has been fixed by
r266869 (http://reviews.llvm.org/D19148), so reenable sibling call
optimization on ppc64
Reviewers: nemanjai kbarton
llvm-svn: 267527
[PPC] Previously when casting generic loads to LXV2DX/ST instructions we
would leave the original load return type in place allowing for an
assertion failure when we merge two equivalent LXV2DX nodes with
different types.
This fixes PR27350.
Reviewers: nemanjai
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19133
llvm-svn: 266438
This is the same change on PPC64 as r255821 on AArch64. I have even borrowed
his commit message.
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given machine function and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel kbarton cycheng
http://reviews.llvm.org/D17533
llvm-svn: 265781
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
http://reviews.llvm.org/D18405
When the integer value loaded is never used directly as integer we should use VSX
or Floating Point Facility integer loads and avoid extra direct move
llvm-svn: 265593
This patch enable sibling call optimization on ppc64 ELFv1/ELFv2 abi, and
add a couple of test cases. This patch also passed llvm/clang bootstrap
test, and spec2006 build/run/result validation.
Original issue: https://llvm.org/bugs/show_bug.cgi?id=25617
Great thanks to Tom's (tjablin) help, he contributed a lot to this patch.
Thanks Hal and Kit's invaluable opinions!
Reviewers: hfinkel kbarton
http://reviews.llvm.org/D16315
llvm-svn: 265506
Chapter 3 of the QPX manual states that, "Scalar floating-point load
instructions, defined in the Power ISA, cause a replication of the source data
across all elements of the target register." Thus, if we have a load followed
by a QPX splat (from the first lane), the splat is redundant. This adds a late
MI-level pass to remove the redundant splats in some of these cases
(specifically when both occur in the same basic block).
This optimization is scheduled just prior to post-RA scheduling. It can't happen
before anything that might replace the load with some already-computed quantity
(i.e. store-to-load forwarding).
llvm-svn: 265047
When dealing with complex<float>, and similar structures with two
single-precision floating-point numbers, especially when such things are being
passed around by value, we'll sometimes end up loading both float values by
extracting them from one 64-bit integer load. It looks like this:
t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
t16: i64 = srl t13, Constant:i32<32>
t17: i32 = truncate t16
t18: f32 = bitcast t17
t19: i32 = truncate t13
t20: f32 = bitcast t19
The problem, especially before the P8 where those bitcasts aren't legal (and
get expanded via the stack), is that it would have been better to use two
floating-point loads directly. Here we add a target-specific DAGCombine to do
just that. In short, we turn:
ld 3, 0(5)
stw 3, -8(1)
rldicl 3, 3, 32, 32
stw 3, -4(1)
lfs 3, -4(1)
lfs 0, -8(1)
into:
lfs 3, 4(5)
lfs 0, 0(5)
llvm-svn: 264988