This rule permits the injected-class-name of a class template to be used as
both a template type argument and a template template argument, with no extra
syntax required to disambiguate.
llvm-svn: 292426
The rules around typechecking deduced template arguments during partial
ordering are not clear, and while the prior behavior does not seem to be
correct (it doesn't follow the general model of partial ordering where each
template parameter is replaced by a non-dependent but unique value), the new
behavior is also not clearly right and breaks some existing idioms.
The new behavior is retained for dealing with non-type template parameters
with 'auto' types, as without it even the most basic uses of that feature
don't work. We can revisit this once CWG has come to an agreement on how
partial ordering with 'auto' non-type template parameters is supposed to
work.
llvm-svn: 292183
In the case where the template class itself is already `dllexport`, the
implicit instantiation will have already emitted all members. When we
check the explicit instantiation definition, the `Specialization` will
have inherited the `dllexport` attribute, so we'll attempt to emit all
members for a second time, which causes an assertion failure. Restrict
the exporting to when the `dllexport` attribute is newly introduced by
the explicit instantiation definition.
Fixes PR31608.
Differential Revision: https://reviews.llvm.org/D28590
llvm-svn: 291877
Fixes a crash in modules where the template class decl becomes the most recent
decl in the redeclaration chain and forcing the template instantiator try to
instantiate the friend declaration, rather than the template definition.
In practice, A::list<int> produces a TemplateSpecializationType
A::__1::list<int, allocator<type-parameter-0-0> >' failing to replace to
subsitute the default argument to allocator<int>.
Kudos Richard Smith (D28399).
llvm-svn: 291753
properly even when a non-type template parameter has a dependent type.
Previously, if a non-type template parameter was dependent, but not dependent
on an outer level of template parameter, we would not match the type of the
parameter. Under [temp.arg.template], we are supposed to check that the types
are equivalent, which means checking for syntactic equivalence in the dependent
case.
This also fixes some accepts-invalids when passing templates with auto-typed
non-type template parameters as template template arguments.
llvm-svn: 291512
dependent context and can't be used in a constant expression.
Per C++ [temp.inst]p2, "the instantiation of a static data member does not
occur unless the static data member is used in a way that requires the
definition to exist".
This doesn't /quite/ match that, as we still instantiate static data members
that are usable in constant expressions even if the use doesn't require a
definition. A followup patch will fix that for both variables and functions.
llvm-svn: 291295
In many translation units I have tried, the calls to isIgnored() removed
in this patch are more expensive than doing the analysis that is behind
it. The speed-up in translation units I have tried is between 10 and
20%.
Review: https://reviews.llvm.org/D28208
llvm-svn: 290842
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792
to make reference to template parameters. This is only a partial
implementation; we retain the restriction that the argument must not be
type-dependent, since it's unclear how that would work given the existence of
other language rules requiring an exact type match in this context, even for
type-dependent cases (a question has been raised on the core reflector).
llvm-svn: 290647
specialized than the primary template. (Put another way, if we imagine there
were a partial specialization matching the primary template, we should never
select it if some other partial specialization also matches.)
llvm-svn: 290593
template parameters of reference type basically doesn't work, because we're
always deducing from an argument expression of non-reference type, so the type
of the deduced expression never matches. Instead, compare the type of an
expression naming the parameter to the type of the argument.
llvm-svn: 290586
dependent contexts when processing the template in C++11 and C++14, just like
we do in C++98 and C++1z. This allows us to diagnose invalid templates earlier.
llvm-svn: 290567
non-type template parameters.
During partial ordering, when checking the substituted deduced template
arguments match the original, check the types of non-type template arguments
match even if they're dependent. The only way we get dependent types here is if
they really represent types of the other template (which are supposed to be
modeled as being substituted for unique, non-dependent types).
In order to make this work for auto-typed non-type template arguments, we need
to be able to perform auto deduction even when the initializer and
(potentially) the auto type are dependent, support for which is the bulk of
this patch. (Note that this requires the ability to deduce only a single level
of a multi-level dependent type.)
llvm-svn: 290511
template arguments as written rather than the canonical template arguments,
so we print more user-friendly names for template parameters.
llvm-svn: 290483
argument even if the expression is value-dependent (we need to suppress the
final portion of the narrowing check, but the rest of the checking can still be
done eagerly).
This affects template template argument validity and partial ordering under
p0522r0.
llvm-svn: 290276
expressions in a function or class template.
This patch makes the following changes:
- Create a DependentScopeDeclRefExpr for the default argument instead of
a CXXDependentScopeMemberExpr.
- Pass CombineWithOuterScope=true so that the outer scope in which the
enum is declared is searched for the instantiation of the enum.
This is the first part of https://reviews.llvm.org/D23096. Fixes PR28795
rdar://problem/27535319
llvm-svn: 289914
Other compilers accept invalid code here that we reject, and we need a
better error message to try to convince users that the code is really
incorrect. Consider:
class Foo {
typedef MyIterHelper<Foo> iterator;
friend class iterator;
};
Previously our wording was "elaborated type refers to a typedef".
"elaborated type" isn't widely known terminology, so the new diagnostic
says "typedef 'iterator' cannot be referenced with class specifier".
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D25216
llvm-svn: 289259
Some functions and templates are treated as __host__ __device__ even
when they don't have explicitly specified target attributes.
What's worse, this treatment may change depending on command line
options (-fno-cuda-host-device-constexpr) or
#pragma clang force_cuda_host_device.
Combined with strict checking for matching function target that comes
with D25809(r288962), it makes it hard to write code which would
explicitly instantiate or specialize some functions regardless of
pragmas or command line options in effect.
This patch changes the way we match target attributes of base template
vs attributes used in explicit instantiation or specialization so that
only explicitly specified attributes are considered. This makes base
template selection behave consistently regardless of pragma of command
line options that may affect CUDA target.
Differential Revision: https://reviews.llvm.org/D25845
llvm-svn: 289091
* __host__ __device__ functions are no longer considered to be
redeclarations of __host__ or __device__ functions. This prevents
unintentional merging of target attributes across them.
* Function target attributes are not considered (and must match) during
explicit instantiation and specialization of function templates.
Differential Revision: https://reviews.llvm.org/D25809
llvm-svn: 288962
On MSVC, if an implicit instantiation already exists and an explicit
instantiation definition with a DLL attribute is created, the DLL
attribute still takes effect. Make clang match this behavior for
exporting.
Differential Revision: https://reviews.llvm.org/D26657
llvm-svn: 288682
An explicit template specialization can cause the implicit template
specialization of a type which inherits the attributes. In such a case, we
would end up with a delayed template specialization for a dll exported type
which we would fail to reference. This would trigger an assertion.
We now propagate the dll storage attributes through the inheritance
chain. Only after having done so do we reference the delayed template
specializations. This allows any implicit specializations which inherit dll
storage to also be referenced.
llvm-svn: 288570
arguments from a declaration; despite what the standard says, this form of
deduction should not be considering exception specifications.
llvm-svn: 288301
Similar to r284288, make the Itanium ABI follow MS ABI dllexport
semantics in the case of an explicit instantiation declaration followed
by a dllexport explicit instantiation definition.
Differential Revision: https://reviews.llvm.org/D26471
llvm-svn: 286419
This commit improves the "must have C++ linkage" error diagnostics that are
emitted for C++ declarations like templates and literal operators by adding an
additional note that points to the appropriate extern "C" linkage specifier.
rdar://19021120
Differential Revision: https://reviews.llvm.org/D26189
llvm-svn: 285823
1) Merge and demote variable definitions when we find a redefinition in
MergeVarDecls, not only when we find one in AddInitializerToDecl (we only reach
the second case if it's the addition of the initializer itself that converts an
existing declaration into a definition).
2) When rebuilding a redeclaration chain for a variable, if we merge two
definitions together, mark the definitions as merged so the retained definition
is made visible whenever the demoted definition would have been.
Original commit message (from r283882):
[modules] PR28752: Do not instantiate variable declarations which are not visible.
Original patch by Vassil Vassilev! Changes listed above are mine.
llvm-svn: 284284
Original message:
"[modules] PR28752: Do not instantiate variable declarations which are not visible.
https://reviews.llvm.org/D24508
Patch developed in collaboration with Richard Smith!"
llvm-svn: 284008
Summary:
This is possible now that MapVector supports move-only values.
Depends on D25404.
Reviewers: timshen
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25405
llvm-svn: 283766
explicit specialization to a warning for C++98 mode (this is a defect report
resolution, so per our informal policy it should apply in C++98), and turn
the warning on by default for C++11 and later. In all cases where it fires, the
right thing to do is to remove the pointless explicit instantiation.
llvm-svn: 280308
within the instantiation of that same specialization. This could previously
happen for eagerly-instantiated function templates, variable templates,
exception specifications, default arguments, and a handful of other cases.
We still have an issue here for default template arguments that recursively
make use of themselves and likewise for substitution into the type of a
non-type template parameter, but in those cases we're producing a different
entity each time, so they should instead be caught by the instantiation depth
limit. However, currently we will typically run out of stack before we reach
it. :(
llvm-svn: 280190
to DiagnoseUninstantiableTemplate, teach hasVisibleDefinition to correctly
determine whether a function definition is visible, and mark both the function
and the template as visible when merging function template definitions to
provide hasVisibleDefinition with the relevant information.
The change to always pass the right declaration as the PatternDef to
DiagnoseUninstantiableTemplate also caused those checks to happen before other
diagnostics in InstantiateFunctionDefinition, giving worse diagnostics for the
same situations, so I sunk the relevant diagnostics into
DiagnoseUninstantiableTemplate. Those parts of this patch are based on changes
in reviews.llvm.org/D23492 by Vassil Vassilev.
This reinstates r279486, reverted in r279500, with a fix to
DiagnoseUninstantiableTemplate to only mark uninstantiable explicit
instantiation declarations as invalid if we actually diagnosed them. (When we
trigger an explicit instantiation of a class member from an explicit
instantiation declaration for the class, it's OK if there is no corresponding
definition and we certainly don't want to mark the member invalid in that
case.) This previously caused a build failure during bootstrap.
llvm-svn: 279557
to DiagnoseUninstantiableTemplate, teach hasVisibleDefinition to correctly
determine whether a function definition is visible, and mark both the function
and the template as visible when merging function template definitions to
provide hasVisibleDefinition with the relevant information.
The change to always pass the right declaration as the PatternDef to
DiagnoseUninstantiableTemplate also caused those checks to happen before other
diagnostics in InstantiateFunctionDefinition, giving worse diagnostics for the
same situations, so I sunk the relevant diagnostics into
DiagnoseUninstantiableTemplate. Those parts of this patch are based on changes
in reviews.llvm.org/D23492 by Vassil Vassilev.
llvm-svn: 279486
Summary:
Space for storing the //constraint-expression// of the
//requires-clause// associated with a `TemplateParameterList` is
arranged by taking a bit out of the `NumParams` field for the purpose
of determining whether there is a //requires-clause// or not, and by
adding to the trailing objects tied to the `TemplateParameterList`. An
accessor is provided.
An appropriate argument is supplied to `TemplateParameterList::Create`
at the various call sites.
Serialization changes will addressed as the Concepts implementation
becomes more solid.
Drive-by fix:
This change also replaces the custom
`FixedSizeTemplateParameterListStorage` implementation with one that
follows the interface provided by `llvm::TrailingObjects`.
Reviewers: aaron.ballman, faisalv, rsmith
Subscribers: cfe-commits, nwilson
Differential Revision: https://reviews.llvm.org/D19322
llvm-svn: 276069
After thinking about it, we don't really need to forbid
BuiltinTemplateDecls explicitly. The restriction doesn't really buy us
anything.
llvm-svn: 275078
This patch adds a __nth_element builtin that allows fetching the n-th type of a
parameter pack with very little compile-time overhead. The patch was inspired by
r252036 and r252115 by David Majnemer, which add a similar __make_integer_seq
builtin for efficiently creating a std::integer_sequence.
Reviewed as D15421. http://reviews.llvm.org/D15421
llvm-svn: 274316
See https://llvm.org/bugs/show_bug.cgi?id=28100.
In r266561 when I implemented allowing explicit specializations of function templates to override deleted status, I mistakenly assumed (and hence introduced a violable assertion) that when an explicit specialization was being declared, the corresponding specialization of the most specialized function template that it would get linked to would always be the one that was implicitly generated - and so if it was marked as 'deleted' it must have inherited it from the primary template and so should be safe to reset its deleted status, and set it to being an explicit specialization. Obviously during redeclaration of a deleted explicit specialization, in order to avoid a recursive reset, we need to check that the previous specialization is not an explicit specialization (instead of assuming and asserting it) and that it hasn't been referenced, and so only then is it safe to reset its 'deleted' status.
All regression tests pass.
Thanks to Zhendong Su for reporting the bug and David Majnemer for tracking it to my commit r266561, and promptly bringing it to my attention.
llvm-svn: 272631
Crash reported in PR28023 is caused by the fact that non-type template
parameters are found by tag name lookup. In the code provided in that PR:
template<int V> struct A {
struct B {
template <int> friend struct V;
};
};
the template parameter V is found when lookup for redeclarations of 'struct V'
is made. Latter on the error about shadowing of 'V' is emitted but the semantic
context of 'struct V' is already determined wrong: 'struct A' instead of
translation unit.
The fix moves the check for shadowing toward the beginning of the method and
thus prevents from wrong context calculations.
This change fixes PR28023.
llvm-svn: 272366
Also make explicit instantiation decls not apply to nested classes when
targeting MSVC. That dll attributes are not inherited by inner classes
might be the explanation for MSVC's behaviour here.
llvm-svn: 270897
This matches what MSVC does, and should make compiles faster by avoiding to
unnecessarily emit a lot of code.
Differential Revision: http://reviews.llvm.org/D20608
llvm-svn: 270748
This is in preparation for C++ P0136R1, which switches the model for inheriting
constructors over from synthesizing a constructor to finding base class
constructors (via using shadow decls) when looking for derived class
constructors.
llvm-svn: 269231
declared before it is used. Because we don't use normal name lookup to find
these, the normal code to filter out non-visible names from name lookup results
does not apply.
llvm-svn: 268585
template<class T> void f(T) = delete;
template<> void f(int); // OK.
f(3); // OK
Implementation strategy:
When an explicit specialization of a function template, a member function template or a member function of a class template is declared, clang first implicitly instantiates the declaration of a specialization from the templated-entity being explicitly specialized (since their signatures must be the same) and then links the explicit specialization being declared as a redeclaration of the aforementioned specialization.
The problem was that when clang 'implicitly instantiates' the initial specialization, it marks the corresponding FunctionDecl as deleted if the corresponding templated-entity was deleted, rather than waiting to see whether the explicit specialization being declared provides a non-deleted body. (The eager marking of delete has advantages during overload resolution I suppose, where we don't have to try and instantiate a definition of the function to see if it is deleted).
The present fix entails recognizing that when clang knows that an explicit specialization is being declared (for whichever templated-entity), the prior implicit instantiation should not inherit the 'deleted' status, and so we reset it to false.
I suppose an alternative fix (amongst others) could consider creating a new context (ExplicitSpecializationDeclarationSubstitution or some such) that is checked during template-argument-deduction and final substitution, and avoid inheriting the deleted status during declaration substitution. But while conceptually cleaner, that would be a slightly more involved change (as could be some of the other alternatives: such as avoid tagging implicit specializations as deleted, and check their primary templates for the deleted status where needed), and so I chose a different path. Hopefully it'll prove to not be a bad choice.
llvm-svn: 266561
Summary: A program shall not declare an explicit instantiation (14.8.2), an explicit specialization (14.8.3), or a partial specialization of a concept definition.
Reviewers: rsmith, hubert.reinterpretcast, faisalv, aaron.ballman
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18221
llvm-svn: 265868
This is a fix for https://llvm.org/bugs/show_bug.cgi?id=25561 which was a
crash on invalid. Change the handling of invalid decls to have a catch-all
case to prevent unexpecting decls from triggering an assertion.
llvm-svn: 265467
The prior diagnostic (err_template_arg_not_class_template) would state that the template argument to a template template parameter can only be a class template, when it can also be a template alias. The newly renamed diagnostic (err_template_arg_not_valid_template) mentions template aliases.
llvm-svn: 264522
This feature works outside of templates by forming a DeclRefExpr to a
FieldDecl instead of a MemberExpr, which requires a base object in
addition to the FieldDecl.
Previously, while building up the template AST before instantiation, we
formed a CXXDependentScopeMemberExpr, which always instantiates to a
MemberExpr. Now, in unevaluated contexts we form a
DependentScopeDeclRefExpr, which is a more flexible node that can
instantiate to either a MemberExpr or a DeclRefExpr depending on lookup
results.
Fixes PR26893.
llvm-svn: 263279
Relands r260194 with a fix. If we have a template that transitions from
an extern template to an explicitly instantiated dllexport template, we
would add that class to the delayed exported class list without flushing
it.
For explicit instantiations, we can just flush the list of delayed
classes immediately. We don't have to worry about the bug fixed in
r260194 in this case because explicit instantiations can only occur at
file and namespace scope.
Fixes PR26490.
llvm-svn: 262056
diagnosing when 'concept' is specified on a function or template
specialization.
Since a concept can only be applied to a function or variable template,
the concept bit is stored in TemplateDecl as a PointerIntPair.
Reviewers: rsmith, faisalv, aaron.ballman, hubert.reinterpretcast
Differential Revision: http://reviews.llvm.org/D13357
llvm-svn: 260074
Or, do not set Sema's CurContext to the template declaration's when substituting into default template arguments of said template declaration.
If we do push the template declaration context on to Sema, and the template declaration is at namespace scope, Sema can get confused and try and do odr analysis when substituting into default template arguments, even though the substitution could be occurring within a dependent context.
I'm not sure why this was being done, perhaps there was concern that if a default template argument referred to a previous template parameter, it might not be found during substitution - but all regression tests pass, and I can't craft a test that would cause it to fails (if some one does, please inform me, and i'll craft a different fix for the PR).
This patch removes a single line of code, but unfortunately adds more than it removes, because of the tests. Some day I still hope to commit a patch that removes far more lines than it adds, while leaving clang better for it ;)
Sorry that r253590 ("Change the expression evaluation context from Unevaluated to ConstantEvaluated while substituting into non-type template argument defaults") caused the PR!
llvm-svn: 258110
Summary:
Support for OpenCL 2.0 pipe type.
This is a bug-fix version for bader's patch reviews.llvm.org/D14441
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: bader, Anastasia, cfe-commits
Differential Revision: http://reviews.llvm.org/D15603
llvm-svn: 257254
underlying decls. Preserve the found declaration throughout, and only map to
the underlying declaration when we want to check whether it's the right kind.
This allows us to provide the right source location for the found declaration,
and prepares for the possibility of underlying decls with a different name
from the found decl.
llvm-svn: 256575
is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
Also address a typo from a prior patch that performed a similar fix during Parsing of default non-type template arguments. I left the RAII ExpressionEvaluationContext variable Name as Unevaluated though we had switched the context to ConstantEvaluated.
There should be no functionality change here - since when expression evaluation context is popped off, for the most part these two contexts currently behave similarly in regards to lambda diagnostics and odr-use tracking.
Like its parsing counterpart, this patch presages the advent of constexpr lambda patches...
llvm-svn: 253590
We created a malformed TemplateSpecializationType: it was dependent but
had a RecordType as it's canonical type. This would lead getAs to
crash. r249090 worked around this but we should fix this for real by
providing a more appropriate template specialization type as the
canonical type.
This fixes PR24246.
llvm-svn: 253495
This new builtin template allows for incredibly fast instantiations of
templates like std::integer_sequence.
Performance numbers follow:
My work station has 64 GB of ram + 20 Xeon Cores at 2.8 GHz.
__make_integer_seq<std::integer_sequence, int, 90000> takes 0.25
seconds.
std::make_integer_sequence<int, 90000> takes unbound time, it is still
running. Clang is consuming gigabytes of memory.
Differential Revision: http://reviews.llvm.org/D13786
llvm-svn: 252036
partial specialization can perform conversions on the argument. Be sure we
start again from the original argument when checking each possible template.
llvm-svn: 249114
We used to only select an inheritance model if the pointer to member was
nullptr. Instead, select a model regardless of the member pointer's
value.
N.B. This bug was exposed by making member pointers report true for
isIncompleteType but has been latent since the member pointer scheme's
inception.
llvm-svn: 247464
It's possible for TagRedeclarations to involve decls without a name,
ie, anonymous enums. We hit some undefined behaviour if we bind these
null names to the reference here.
We never dereference the name, so it's harmless if it's null - make it
a pointer to allow that.
Fixes the Modules/submodules-merge-defs.cpp test under ubsan.
llvm-svn: 241963
an existing using shadow declaration if they define entities of the same kind
in different namespaces.
We'd previously check this consistently if the using-declaration came after the
other declaration, but not if it came before.
llvm-svn: 241428
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270