top-of-tree. Removed all local patches and llvm.zip.
The intent is that fron now on top-of-tree will
always build against LLVM/Clang top-of-tree, and
that problems building will be resolved as they
occur. Stable release branches of LLDB can be
constructed as needed and linked to specific release
branches of LLVM/Clang.
llvm-svn: 164563
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Fixed an issue that could cause references the shared data for an object file to stay around longer than intended and could cause memory bloat when debugging multiple times.
llvm-svn: 161716
Remove assertions and turn what used the be the assertion into a logged error with instructions on what to attach to a radar so we can track down why this is happening.
llvm-svn: 160392
a cache of address ranges for child sections,
accelerating lookups. This cache is built during
object file loading, and is then set in stone once
the object files are done loading. (In Debug builds,
we ensure that the cache is never invalidated after
that.)
llvm-svn: 158188
that automatically generated setters/getters only
get added to a class after explicitly declared (or
synthesized) getters/setters had the chance to be
added. This eliminates conflicts creating errors
of the form:
error: instance method '...' has incompatible result
types in different translation units ('X *' vs. 'id')
llvm-svn: 157956
Fixed an issue with the current type being set to DIE_IS_BEING_PARSED in the m_die_to_type map by making sure the type pointer is valid.
llvm-svn: 157836
(actually, mainly just hooked up support that was already
there). Added a test case, although it's expected to fail
right now unless you're using top-of-tree LLVM.
llvm-svn: 157220
ObjCPlusPlus as Objective-C classes. Really the
compiler should say they have Objective-C runtime
class, but we should be a little more resilient
(we were refusing to find ivars in those classes
before).
Also added a test case.
llvm-svn: 155515
Fixed an issue that would happen when using debug map with DWARF in the .o files where we wouldn't ever track down the actual definition for a type when things were in namespaces. We now serialize the decl context information into an intermediate format which allows us to track down the correct definition for a type regardless of which DWARF symbol file it comes from. We do this by creating a "DWARFDeclContext" object that contains the DW_TAG + name for each item in a decl context which we can then use to veto potential accelerator table matches. For example, the accelerator tables store the basename of the type, so if you have "std::vector<int>", we would end up with an accelerator table entry for the type that contained "vector<int>", which we would then search for using a DWARFDeclContext object that contained:
[0] DW_TAG_class_type "vector<int>"
[1] DW_TAG_namespace "std"
This is currently used to track down forward declarations for things like "class a:🅱️:Foo;".
llvm-svn: 155488
class AnalysisResolver;
And we will look for it everywhere and find many many matches, but the decl context of those matching DIEs is "clang::AnalysisResolver", so we never match anything, yet we pull in waaayyy too much DWARF in the process.
To enable this logging enable the "lookups" category in the "dwarf" log channel:
(lldb) log enable dwarf lookups
llvm-svn: 155233
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
FunctionDecls into classes if it looked up a
method in a different DWARF context than the
one where it found the parent class's definition.
The symptom of this was, for a method A::B(),
1) LLDB finds A in context 1, creating a
CXXRecordDecl for A and marking it as needing
completion
2) LLDB looks up B in context 2, finds that its
parent A already has a CXXRecordDecl, but can't
find a CXXMethodDecl for B
3) Not finding a CXXMethodDecl for B, LLDB doesn't
set the flag indicating that B was resolved
4) Because the flag wasn't set, LLDB's fallthrough
code creates a FunctionDecl for B and sticks it
in the DeclContext -- in this case, A.
5) Clang crashes on finding a FunctionDecl inside a
CXXRecordDecl.
llvm-svn: 154627
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067
Fixed an issue where there were more than one way to get a CompileUnitSP created when using SymbolFileDWARF with SymbolFileDWARFDebugMap. This led to an assertion that would fire under certain conditions. Now there is only one way to create the compile unit and it will "do the right thing".
llvm-svn: 153908
(lldb) log enable --verbose lldb completion
This will print out backtraces for all type completion calls which will help us verify that we don't ever complete a type when we don't need to.
llvm-svn: 153787
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
Symbol files (dSYM files on darwin) can now be specified during program execution:
(lldb) target symbols add /path/to/symfile/a.out.dSYM/Contents/Resources/DWARF/a.out
This command can be used when you have a debug session in progress and want to add symbols to get better debug info fidelity.
llvm-svn: 153693
for unbacked properties. We support two variants:
one in which the getter/setter are provided by
selector ("mySetter:") and one in which the
getter/setter are provided by signature
("-[MyClass mySetter:]").
llvm-svn: 153675
1 - sections only get a valid VM size if they have SHF_ALLOC in the section flags
2 - symbol names are marked as mangled if they start with "_Z"
Also fixed the DWARF parser to correctly use the section file size when extracting the DWARF.
llvm-svn: 153496
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Fixed a case where the source path remappings on the module were too expensive to
use when we try to verify (stat the file system) that the remapped path points to
a valid file. Now we will use the lldb_private::Module path remappings (if any) when
parsing the debug info without verifying that the paths exist so we don't slow down
line table parsing speeds.
llvm-svn: 153059
http://llvm.org/bugs/show_bug.cgi?id=12232
Fixed a case where a missing "break" in a switch statement could cause an assertion to fire and kill the debug session.
The fix was derived from the findings of Andrea Bigagli, thanks Andrea.
llvm-svn: 152741
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
indicate whether inline functions are desired.
This allows the expression parser, for instance,
to filter out inlined functions when looking for
functions it can call.
llvm-svn: 150279
enable us to track the depth of parsing and what is being parsed. This
helps when trying to track down difficult type parsing issues and is only
enabled in non-production builds.
llvm-svn: 150203
working, but not functions). I need to check on a few things to make sure
I am registering everything correctly in the right order and in the right
contexts.
llvm-svn: 149858
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
LLVM/Clang. This brings in several fixes, including:
- Improvements in the Just-In-Time compiler's
allocation of memory: the JIT now allocates
memory in chunks of sections, improving its
ability to generate relocations. I have
revamped the RecordingMemoryManager to reflect
these changes, as well as to get the memory
allocation and data copying out fo the
ClangExpressionParser code. Jim Grosbach wrote
the updates to the JIT on the LLVM side.
- A new ExternalASTSource interface to allow LLDB to
report accurate structure layout information to
Clang. Previously we could only report the sizes
of fields, not their offsets. This meant that if
data structures included field alignment
directives, we could not communicate the necessary
alignment to Clang and accesses to the data would
fail. Now we can (and I have update the relevant
test case). Thanks to Doug Gregor for implementing
the Clang side of this fix.
- The way Objective-C interfaces are completed by
Clang has been made consistent with RecordDecls;
with help from Doug Gregor and Greg Clayton I have
ensured that this still works.
- I have eliminated all local LLVM and Clang patches,
committing the ones that are still relevant to LLVM
and Clang as needed.
I have tested the changes extensively locally, but
please let me know if they cause any trouble for you.
llvm-svn: 149775
a type when we have a forward declaration. We always have found a
type by basename, but now we also compare the decl context of the
die we are trying to complete with the matches we find from the accelerator
tables to ensure we get the right one.
llvm-svn: 149593
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
will ask ExternalASTSource objects to help laying out a type. This is needed
because the DWARF typically doesn't contain alignement or packing attribute
values, and we need to be able to match up types that the compiler uses
in expressions.
llvm-svn: 149160
be fetched too many times and the DisassemblerLLVM was appending to strings
when the opcode, mnemonic and comment accessors were called multiple times
and if any of the strings were empty.
Also fixed the test suite failures from recent Objective C modifications.
llvm-svn: 148460
for each ObjCInterfaceDecl was imposing performance
penalties for Objective-C apps. Instead, we now use
the normal function query mechanisms, which use the
relevant accelerator tables.
This fix also includes some modifications to the
SymbolFile which allow us to find Objective-C methods
and report their Clang Decls correctly.
llvm-svn: 148457
objective C class names when extracting the class name, selector and
name without category for objective C full class and instance method
names.
llvm-svn: 148435
much smarter by extracting search results more efficiently and by properly obeying the
must_be_implementation bool in the SymbolFileDWARF::FindCompleteObjCDefinitionTypeForDIE()
function.
llvm-svn: 148413
Fixed the new __apple_types to be able to accept a DW_TAG_structure_type
forward declaration and then find a DW_TAG_class_type definition, or vice
versa.
llvm-svn: 148097
Fix DWARF parsing issue we can run into when using llvm-gcc based dSYM files.
Also fix the parsing of objective C built-in types (Class, id and SEL) so
they don't parse more information that is not needed due to the way they
are represented in DWARF.
llvm-svn: 148016
so that we don't have "fprintf (stderr, ...)" calls sprinkled everywhere.
Changed all needed locations over to using this.
For non-darwin, we log to stderr only. On darwin, we log to stderr _and_
to ASL (Apple System Log facility). This will allow GUI apps to have a place
for these error and warning messages to go, and also allows the command line
apps to log directly to the terminal.
llvm-svn: 147596
Be better at detecting when DWARF changes and handle this more
gracefully than asserting and exiting.
Also fixed up a bunch of system calls that weren't properly checking
for EINTR.
llvm-svn: 147559
Fixed an issue where our new accelerator tables could cause a crash
when we got a full 32 bit hash match, yet a C string mismatch.
We had a member variable in DWARFMappedHash::Prologue named
"min_hash_data_byte_size" the would compute the byte size of HashData
so we could skip hash data efficiently. It started out with a byte size
value of 4. When we read the table in from disk, we would clear the
atom array and read it from disk, and the byte size would still be set
to 4. We would then, as we read each atom from disk, increment this count.
So the byte size of the HashData was off, which means when we get a lookup
whose 32 bit hash does matches, but the C string does NOT match (which is
very very rare), then we try and skip the data for that hash and we would
add an incorrect offset and get off in our parsing of the hash data and
cause this crash.
To fix this I added a few safeguards:
1 - I now correctly clear the hash data size when we reset the atom array using the new DWARFMappedHash::Prologue::ClearAtoms() function.
2 - I now correctly always let the AppendAtom() calculate the byte size of the hash (before we were doing things manually some times, which was correct, but not good)
3 - I also track if the size of each HashData is a fixed byte size or not, and "do the right thing" when we need to skip the data.
4 - If we do get off in the weeds, then I make sure to return an error and stop any further parsing from happening.
llvm-svn: 147334
<rdar://problem/10561406>
Stopped the SymbolFileDWARF::FindFunctions (...) from always calculating
the line table entry for all functions that were found. This can slow down
the expression parser if it ends up finding a bunch of matches. Fixed the
places that were relying on the line table entry being filled in.
Discovered a recursive stack blowout that happened when "main" didn't have
line info for it and there was no line information for "main"
llvm-svn: 146330
An assertion was firing when parsing types due to trying to complete parent
class decl contenxt types too often.
Also, relax where "dsymutil" binary can come from in the Makefile.rules.
llvm-svn: 146310
that if we prefer the current compile unit, followed by any compile units that
already had their DIEs parsed, followed by the rest of the matches, that we
might save some memory. This turned out not to help much. The code is commented
out, but I want to check it in so I don't lose the code in case it could help
later.
Added the ability to efficiently find the objective C class implementation
when using the new .apple_types acclerator tables with the type flags. If the
type flags are not available, we default back to what we were doing before.
llvm-svn: 146250
in the context in which it was originally found, the
expression parser now goes hunting for it in all modules
(in the appropriate namespace, if applicable). This means
that forward-declared types that exist in another shared
library will now be resolved correctly.
Added a test case to cover this. The test case also tests
"frame variable," which does not have this functionality
yet.
llvm-svn: 146204
that is in a class from the expression parser, and it was causing an
assertion. There is now a function that will correctly resolve a type
even if it is in a class.
llvm-svn: 146141
take a SymbolFile reference and a lldb::user_id_t and be used in objects
which represent things in debug symbols that have types where we don't need
to know the true type yet, such as in lldb_private::Variable objects. This
allows us to defer resolving the type until something is used. More specifically
this allows us to get 1000 local variables from the current function, and if
the user types "frame variable argc", we end up _only_ resolving the type for
"argc" and not for the 999 other local variables. We can expand the use of this
as needed in the future.
Modified the DWARFMappedHash class to be able to read the HashData that has
more than just the DIE offset. It currently will read the atoms in the header
definition and read the data correctly. Currently only the DIE offset and
type flags are supported. This is needed for adding type flags to the
.apple_types hash accelerator tables.
Fixed a assertion crash that would happen if we have a variable that had a
DW_AT_const_value instead of a location where "location.LocationContains_DW_OP_addr()"
would end up asserting when it tried to parse the variable location as a
DWARF opcode list.
Decreased the amount of memory that LLDB would use when evaluating an expression
by 3x - 4x for clang. There was a place in the namespace lookup code that was
parsing all namespaces with a certain name in a DWARF file instead of stopping
when it found the first match. This was causing all of the compile units with
a matching namespace to get parsed into memory and causing unnecessary memory
bloat.
Improved "Target::EvaluateExpression(...)" to not try and find a variable
when the expression contains characters that would certainly cause an expression
to need to be evaluated by the debugger.
llvm-svn: 146130
class. The thing with Objective C classes is the debug info might have a
definition that isn't just a forward decl, but it is incomplete. So we need to
look and see if we can find the complete definition and avoid recursing a lot
due to the fact that our accelerator tables will have many versions of the
type, but only one complete one. We might not also have the complete type
and we need to deal with this correctly.
llvm-svn: 145759
Objective-C, making symbol lookups for various raw
Objective-C symbols work correctly. The IR interpreter
makes these lookups because Clang has emitted raw
symbol references for ivars and classes.
Also improved performance in SymbolFiles, caching the
result of asking for SymbolFile abilities.
llvm-svn: 145758
Fixed an issue where if we have the DWARF equivalent of:
struct foo;
class foo { ... };
Or vice versa, we wouldn't be able to find the complete type. Since many
compilers allow forward declarations to have struct and definitions to have
class, we need to be able to deal with both cases. This commit fixes this in
the DWARF parser.
llvm-svn: 145733
to launch a process for debugging. Since this isn't supported on all platforms,
we need to do what we used to do if this isn't supported. I added:
bool
Platform::CanDebugProcess ();
This will get checked before trying to launch a process for debugging and then
fall back to launching the process through the current host debugger. This
should solve the issue for linux and keep the platform code clean.
Centralized logging code for logging errors, warnings and logs when reporting
things for modules or symbol files. Both lldb_private::Module and
lldb_private::SymbolFile now have the following member functions:
void
LogMessage (Log *log, const char *format, ...);
void
ReportWarning (const char *format, ...);
void
ReportError (const char *format, ...);
These will all output the module name and object (if any) such as:
"error: lldb.so ...."
"warning: my_archive.a(foo.o) ...."
This will keep the output consistent and stop a lot of logging calls from
having to try and output all of the information that uniquely identifies
a module or symbol file. Many places in the code were grabbing the path to the
object file manually and if the module represented a .o file in an archive, we
would see log messages like:
error: foo.a - some error happened
llvm-svn: 145219
to 30% of memory. The size doubling was killing us and we ended up with up to
just under 50% of empty capacity. Cleaning this up saves us a ton of memory.
llvm-svn: 145086
1 - the DIE collections no longer have the NULL tags which saves up to 25%
of the memory on typical C++ code
2 - faster parsing by not having to run the SetDIERelations() function anymore
it is done when parsing the DWARF very efficiently.
llvm-svn: 144983
we say that the vectors of DWARFDebugInfoEntry objects were the highest on the
the list.
With these changes we cut our memory usage by 40%!!! I did this by reducing
the size of the DWARFDebugInfoEntry from a previous:
uint32_t offset
uint32_t parent_idx
uint32_t sibling_idx
Abbrev * abbrev_ptr
which was 20 bytes, but rounded up to 24 bytes due to alignment. Now we have:
uint32_t offset
uint32_t parent_idx
uint32_t sibling_idx
uint32_t abbr_idx:15, // 32767 possible abbreviation codes
has_children:1, // 0 = no children, 1 = has children
tag:16; // DW_TAG_XXX value
This gets us down to 16 bytes per DIE. I tested some VERY large DWARF files
(900MB) and found there were only ~700 unique abbreviations, so 32767 should
be enough for any sane compiler. If it isn't there are built in assertions
that will fire off and tell us.
llvm-svn: 144975
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
string to avoid possible later crashes.
Modified the locations that do set the crash description to NULL out the
string when they are done doing their tasks.
llvm-svn: 144297
Fixed an issue where if you had an initialized global variable, we would not
link it up correctly in the debug info if the .o file had the symbols as
UNDF + EXT (undefined external). We now properly link the globals.
llvm-svn: 144259
generated special member functions (constructors,
destructors, etc.) for classes that don't really have
them. We needed to mark these as artificial to reflect
the debug information; this bug does that for
constructors and destructors.
The "etc." case (certain assignment operators, mostly)
remains to be fixed.
llvm-svn: 143526
method as __attribute__ ((used)) when adding it to a
class. This functionality is useful when stopped in
anonymous namespaces: expressions attached to classes
in anonymous namespaces are typically elided by Clang's
CodeGen because they have no namespaces are intended
not to be externally visible. __attribute__ ((used))
forces CodeGen to emit the function.
Right now, __attribute__ ((used)) causes the JIT not to
emit the function, so we're not enabling it until we
fix that.
llvm-svn: 143469
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
Fixed an issue where bad DWARF from clang would get recycled from DWARF back
into types and cause clang to assert and die, killing the lldb binary, when
it tried to used the type in an expression.
llvm-svn: 142897
tables (like the .apple_namespaces) and it would cause us to index DWARF that
didn't need to be indexed.
Updated the MappedHash.h (generic Apple accelerator table) and the DWARF
specific one (HashedNameToDIE.h) to be up to date with the latest and
greatest hash table format.
llvm-svn: 142627
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
so we don't have to lookup types in a type list by ID.
Changed the DWARF parser to remove the "can externally complete myself" bits
from the type when we are in the process of completing the type itself to
avoid an onslaught of external visible decl requests from the
clang::ExternalASTSource.
llvm-svn: 142461
which had previously been commented out while I tested
it. It's not fully working yet, but it doesn't break
our testsuite and it's an important piece of
functionality.
Also added some logging to SymbolFileDWARF to help
diagnose entities that are found in a symbol file,
but do not reside in the expected namespace.
llvm-svn: 141894
context object. Having it populated and registered
within a single FindExternalVisibleDecls call worked
fine when there was only one call (i.e., when we were
just looking in the global namespace).
However, now FindExternalVisibleDecls is called for
nested namespaces as well, which means that it is
called not once but many times (once per module in
which the parent namespace appears). This means that
the namespace mapping is built up across many calls
to the inferior FindExternalVisibleDecls, so I moved
it into a data structure (the search context) that is
shared by all calls.
I also added some logging to make it easier to see
what is happening during a namespace search, and
cleaned up some existing logging.
llvm-svn: 141888
down through Module and SymbolVendor into SymbolFile.
Added checks to SymbolFileDWARF that restrict symbol
searches when a namespace is passed in.
llvm-svn: 141847
SymbolFIle (it was done mostly in the BreakpointResolverName resolver before.) Then
tailor our searches to the way the indexed maps are laid out. This removes a bunch
of test case failures using indexed dSYM's.
llvm-svn: 141428
Fixed up DWARFDebugAranges to use the new range classes.
Fixed the enumeration parsing to take a lldb_private::Error to avoid a lot of duplicated code. Now when an invalid enumeration is supplied, an error will be returned and that error will contain a list of the valid enumeration values.
llvm-svn: 141382
(lldb) log enable dwarf lookups
This allows us to see when lookups are being done on functions, addresses,
and types by both name and regular expresssion.
llvm-svn: 141259
index the DWARF. Also fixed an issue with memory accelerator tables with a
size of 1 where we would loop infinitely.
Added support for parsing the new .apple_namespaces section which gives us a
memory hash table for looking up namespaces.
llvm-svn: 141128
Also reduce the size of the lldb_private::Symbol objects by removing the
lldb_private::Function pointer that was in each symbol. Running Instruments
has shown that when debugging large applications with DWARF in .o files that
lldb_private::Symbol objects are one of the highest users of memory. No one
was using the Symbol::GetFunction() call anyway.
llvm-svn: 140881
information generated for it. Say we have a concrete function "foo" which
has inlined function "a" which calls another inlined function "b":
foo
1 {
2 {
a ()
3 {
b ()
4 {
}
}
}
}
Sometimes we see the compiler generate an address range in the DWARF for "foo"
(block 1 above) as say [0x1000-0x1100). Then the range for "a" is something
like [0x1050-0x1060) (note that it is correctly scoped within the "foo"
address range). And then we get "b" which is a child of "a", yet the debug
info says it has a range of [0x1060-0x1080) (not contained within "a"). We now
detect this issue when making our blocks and add an extra range to "a".
Also added a new "lldb" logging category named "symbol" where we can find out
about symbol file errors and warnings.
llvm-svn: 140822
are available, we currently will still index the DWARF ourselves
and assert if the name lookups differ. This will help us transition
to the new accelerator tables and make sure they are workng before
we switch over entirely.
llvm-svn: 140788
etc to specific source files.
Added SB API's to specify these source files & also more than one module.
Added an "exact" option to CompileUnit's FindLineEntry API.
llvm-svn: 140362
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
used to do this because we needed to find the shared pointer for a .o
file when the .o file's module was needed in a SymbolContext since the
module in a symbol context was a shared pointer. Now that we are using
intrusive pointers we don't have this limitation anymore since any
instrusive shared pointer can be made from a pointer to an object
all on its own.
Also switched over to having the Module and SymbolVendor use shared
pointers to their object files as had a leak on MacOSX when the
SymbolVendor's object file wasn't the same as the Module's (debug info
in a stand along file (dSYM file)). Now everything will correctly clean
itself up when the module goes away after an executable gets rebuilt.
Now we correctly get rid of .o files that are used with the DWARF with
debug map executables on subsequent runs since the only shared pointer
to the object files in from the DWARF symbol file debug map parser, and
when the module gets replaced, it destroys to old one along with all .o
files.
Also added a small optimization when using BSD archives where we will
remove old BSD containers from the shared list when they are outdated.
llvm-svn: 140002
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984
Address ranges are now split up into two different tables:
- one in DWARFDebugInfo that is compile unit specific
- one in each DWARFCompileUnit that has exact function DIE offsets
This helps keep the size of the aranges down since the main table will get
uniqued and sorted and have consecutive ranges merged. We then only parse the
compile unit one on demand once we have determined that a compile unit contains
the address in question. We also now use the .debug_aranges section if there
is one instead of always indexing the DWARF manually.
NameToDIE now uses a UniqueCStringMap<dw_offset> map instead of a std::map.
std::map is very bulky as each node has 3 pointers and the key and value types.
This gets our NameToDIE entry down to 12 bytes each instead of 48 which saves
us a lot of memory when we have very large DWARF.
DWARFDebugAranges now has a smaller footprint for each range it contains to
save on memory.
llvm-svn: 139557
One fixes a trailing comma bug (g++ doesn't like them)
The other gets the Error from the result of an expression evaluation and uses it as the error for the Process::LoadImage() method.
llvm-svn: 139336
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
register names when dumping variable locations and location lists. Also did
some cleanup where "int" types were being used for "lldb::RegisterKind"
values.
llvm-svn: 138988
DWARF accelerator table sections to the DWARF parser. These sections are similar
to the .debug_pubnames and .debug_pubtypes, but they are designed to be hash tables
that are saved to disc in a way that the sections can just be loaded into memory
and used without any work on the debugger side. The .debug_pubnames and .debug_pubtypes
sections are not ordered, contain a copy of the name in the section itself which
makes these sections quite large, they only include publicly exported names (so no
static functions, no types defined inside functions), many compilers put different
information in them making them very unreliable so most debugger ignore these sections
and parse the DWARF on their own. The tables must also be parsed and sorted in order
to be used effectively. The new sections can be quickly loaded and very efficiently be used
to do name to DIE lookups with very little up front work. The format of these new
sections will be changing while we work out the bugs, but we hope to have really
fast name to DIE lookups soon.
llvm-svn: 138979
C++ methods for a function depending on how the DWARF was
created. Now we parse the class type from the definition,
and all methods that use DW_AT_specification or DW_AT_abstract_origin
attributes to point to the definition, now won't create
duplicate entries. This is in response to how clang++ creates
much different DWARF than gcc.
llvm-svn: 137737
was failing if the DWARF was laid out in a certain way. The way
we detect C++ classes is now more robust so that a class method
can be defined outside of the class and refer to a definition inside
the class with a DW_AT_specification or DW_AT_abstract_origin attribute.
Fixed a case in Thread.cpp where we were looking up info in the frame
when we didn't need to. This was from some changes to support external
editors. Now the info is only looked up if needed.
llvm-svn: 137436
that detects what context the current expression is
meant to execute in. LLDB now properly consults
the method declaration in the debug information
rather than trying to hunt down the "this" or "self"
pointer by name, which can be misleading.
Other fixes include:
- LLDB now properly detects that it is inside
an inlined C++ member function.
- LLDB now allows access to non-const members when
in const code.
- The functions in SymbolFile that locate the
DeclContext containing a DIE have been renamed
to reflect what they actually do. I have added
new functions that find the DeclContext for the
DIE itself.
I have also introduced testcases for C++ and
Objective-C.
llvm-svn: 136999
appropriately between C++ static methods and non-static
methods. This bug made it impossible to call most static
methods, either because Clang did not recognize that a
method could be called without providing a "this"
parameter, or because Clang did not properly mangle the
name of the method when searching for it in the target.
Also added a testcase.
llvm-svn: 136733
completes the support in the LLDB expression parser
for incomplete types. Clang now imports types
lazily, and we complete those types as necessary.
Changes include:
- ClangASTSource now supports three APIs which it
passes to ClangExpressionDeclMap. CompleteType
completes a TagDecl or an ObjCInterfaceDecl when
needed; FindExternalVisibleDecls finds named
entities that are visible in the expression's
scope; and FindExternalLexicalDecls performs a
(potentially restricted) search for entities
inside a lexical scope like a namespace. These
changes mean that entities in namespaces should
work normally.
- The SymbolFileDWARF code for searching a context
for a specific name is now more general, and can
search arbitrary contexts.
- We are continuing to adapt our calls into LLVM
from interfaces that take start and end iterators
when accepting multiple items to interfaces that
use ArrayRef.
- I have cleaned up some code, especially our use
of namespaces.
This change is neutral for our testsuite and greatly
improves correctness for large programs (like Clang)
with complicated type systems. It should also lay
the groundwork for improving the expression parser's
performance as we are lazier and lazier about
providing type information.
llvm-svn: 136555
by name by adding an extra parameter to the lldb_private::Target breakpoint
setting functions.
Added a function in the DWARF symbol file plug-in that can dump errors
and prints out which DWARF file the error is happening in so we can track
down what used to be assertions easily.
Fixed the MacOSX kernel plug-in to properly read the kext images and set
the kext breakpoint to watch for kexts as they are loaded.
llvm-svn: 134990
variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
"struct ", "class ", and "union " from the start of any type names that are
extracted from clang QualType objects. I had to fix test suite cases that
were expecting the struct/union/class prefix to be there.
llvm-svn: 134132
inspection of namespaces in the expression parser.
ClangExpressionDeclMap hitherto reported that namespaces had
been completely imported, even though the namespaces are
returned empty. To deal with this situation, ClangASTSource
was recently extended with an API to complete incomplete type
definitions, and, for greater efficiency, to complete these
definitions partially, returning only those objects that have
a given name.
This commit supports these APIs on LLDB's side, and uses it
to provide information on types resident in namespaces.
Namespaces are now imported as they were -- that is to say,
empty -- but with minimal import mode on. This means that
Clang will come back and request their contents by name as
needed. We now respond with information on the contained
types; this will be followed soon by information on functions
and variables.
llvm-svn: 133852
issue in the way block variables are marked as parsed. In the DWARF parser we
always parse all blocks for a function at once, so we can mark all blocks as
having all variables parsed and avoid recursive function calls to try and
reparse things that have already been handled.
Fixed an issue with how variables get scoped into blocks. The DWARF parser can
now handle abtract class definitions that contain concrete static variables.
When the concrete instance of the class functions get instantiated, they will
track down the concrete block for the abtract block and add the variable to
each block.
llvm-svn: 133302
darwin (not sure about other platforms).
Modified the communication and connection classes to not require the
BytesAvailable function. Now the "Read(...)" function has a timeout in
microseconds.
Fixed a lot of assertions that were firing off in certain cases and replaced
them with error output and code that can deal with the assertion case.
llvm-svn: 133224
In DWARFCompileUnit::ExtractDIEsIfNeeded we are relying on a compilation units
DIEs to be terminated by a null entry. I think the standard is fairly clear
that all sibling chains are to be terminated by null, but at least gcc 4.5.2
disagrees -- the top level chain drops the final entry. This results in us
interpreting the next compilation unit header as a DIE.
Regardless of whether gcc is right or wrong, we should not overstep a
compilation units extent. This patch ensures that we do not attempt to extract
a DIE beyond the length specified for a given DWARFCompileUnit by ensuring our
current offset is strictly less than the start of the next CU.
llvm-svn: 131721