Summary:
int __builtin_amdgcn_ds_swizzle (int a, int imm);
while imm is a constant.
Differential Revision:
http://reviews.llvm.org/D23682
llvm-svn: 279165
constraints were added to _mm256_broadcast_{pd,ps} intel intrinsics.
The spec for these intrinics is ... pretty much silent on alignment.
This is especially frustrating considering the amount of discussion of
alignment in the load and store instrinsics. So I was forced to rely on
the specification for the VBROADCASTF128 instruction.
That instruction's spec is *also* completely silent on alignment.
Fortunately, when it comes to the instruction's spec, silence is enough.
There is no #GP fault option for an underaligned address so this
instruction, and by inference the intrinsic, can read any alignment.
As it happens, the old code worked exactly this way and in fact we have
plenty of code that hands pointers with less than 16-byte alignment to
these intrinsics. This code broke pretty spectacularly with this commit.
Fortunately, the fix is super simple! Change a 16 to a 1, and ta da!
Anyways, a lot of debugging for a really boring fix. =]
llvm-svn: 278202
Summary:
In order to re-define OpenCL built-in functions
'to_{private,local,global}' in OpenCL run-time library LLVM names must
be different from the clang built-in function names.
Reviewers: yaxunl, Anastasia
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23120
llvm-svn: 277743
As discussed on D22460, I've updated the vbroadcastf128 pd256/ps256 builtins to map directly to generic IR - load+splat a 128-bit vector to both lanes of a 256-bit vector.
Fix for PR28657.
llvm-svn: 276417
- Added new Builtins: enqueue_kernel, get_kernel_work_group_size
and get_kernel_preferred_work_group_size_multiple.
These Builtins use custom check to diagnose parameters of the passed Blocks
i. e. variable number of 'local void*' type params, and check different
overloads specified in Table 6.31 of OpenCL v2.0.
- IR is generated as an internal library call for each OpenCL Builtin,
reusing ObjC Block implementation.
Review: http://reviews.llvm.org/D20249
llvm-svn: 274540
Currently we only have OpenCL 2.0 Builtins i.e. pipes or address space conversions.
They have to be added only in the version 2.0 compilation mode to make the identifiers
available for use in the other versions.
Review: http://reviews.llvm.org/D20249
llvm-svn: 274509
This is important for building libclc. Since r273039 tests are failing
due to now emitting calls to these functions instead of emitting the
DAG node. The libm function names are implemented for OpenCL, and should
call the locally defined versions, so -fno-builtin is used. The IR
Some functions use the __builtins and expect the intrinsics to be
emitted. Without this we end up with nobuiltin calls to intrinsics
or to unsupported library calls.
llvm-svn: 274370
Reapplying patch in r272777 which was reverted
because the llvm patch which added support
for generating the mcrr/mcrr2 instructions
from the intrinsic was causing an assertion
failure. This has now been fixed in llvm.
llvm-svn: 272983
As noted in the code comment, a potential follow-on would be to remove
the builtins themselves. Other than ord/unord, this already works as
expected. Eg:
typedef float v4sf __attribute__((__vector_size__(16)));
v4sf fcmpgt(v4sf a, v4sf b) { return a > b; }
Differential Revision: http://reviews.llvm.org/D21268
llvm-svn: 272840
Patch adds intrinsics for mrrc/mrrc2. The
intrinsics for mrrc/mrrc2 return a single
uint64_t to represent two 32 bit values.
The mcrr/mcrr2 intrinsic was changed to
accept a single uint64_t instead of two
32 bit values as the input for consistency.
Differential Revision: http://reviews.llvm.org/D21179
llvm-svn: 272777
We can now use __builtin_nontemporal_store instead of target specific builtins for naturally aligned nontemporal stores which avoids the need for handling in CGBuiltin.cpp
The scalar integer nontemporal (unaligned) store builtins will have to wait as __builtin_nontemporal_store currently assumes natural alignment and doesn't accept the 'packed struct' trick that we use for normal unaligned load/stores.
The nontemporal loads require further backend support before we can safely convert them to __builtin_nontemporal_load
Differential Revision: http://reviews.llvm.org/D21272
llvm-svn: 272540
_InterlockedIncrement and _InterlockedDecrement have 'long' in their
prototypes. We assumed 'long' was the same size as an i32 which is
incorrect for other targets.
This fixes PR27892.
llvm-svn: 270953
OpenCL builtin functions to_{global|local|private} accepts argument of pointer type to arbitrary pointee type, and return a pointer to the same pointee type in different addr space, i.e.
global gentype *to_global(gentype *p);
It is not desirable to declare it as
global void *to_global(void *);
in opencl header file since it misses diagnostics.
This patch implements these builtin functions as Clang builtin functions. In the builtin def file they are defined to have signature void*(void*). When handling call expressions, their declarations are re-written to have correct parameter type and return type corresponding to the call argument.
In codegen call to addr void *to_addr(void*) is generated with addrcasts or bitcasts to facilitate implementation in builtin library.
Differential Revision: http://reviews.llvm.org/D19932
llvm-svn: 270261
This is matching what trunk gcc is accepting. Also adds a missing ssse3
case. PR27779. The amount of duplication here is annoying, maybe it
should be factored into a separate .def file?
llvm-svn: 270224
Summary:
Previously it was implemented as inline asm in the CUDA headers.
This change allows us to use the [addr+imm] addressing mode when
executing ld.global.nc instructions. This translates into a 1.3x
speedup on some benchmarks that call this instruction from within an
unrolled loop.
Reviewers: tra, rsmith
Subscribers: jhen, cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D19990
llvm-svn: 270150
The intrinsic is now called llvm.thread.pointer, not
llvm.aarch64.thread.pointer. Also, the code handling it in CGBuiltin.cpp
is dead - it's already covered by GCCBuiltin. Remove it.
Differential Revision: http://reviews.llvm.org/D19099
llvm-svn: 266817
r259537 added vfma/vfms to armv7, but the builtin was only lowered
on the AArch64 side. Instead of supporting it on ARM, get rid of it.
The vfms builtin lowered to:
%nb = fsub float -0.0, %b
%r = @llvm.fma.f32(%a, %nb, %c)
Instead, define the operation in terms of vfma, and swap the
multiplicands. It now lowers to:
%na = fsub float -0.0, %a
%r = @llvm.fma.f32(%na, %b, %c)
This matches the instruction more closely, and lets current LLVM
generate the "natural" operand ordering:
fmls.2s v0, v1, v2
instead of the crooked (but equivalent):
fmls.2s v0, v2, v1
Except for theses changes, assembly is identical.
LLVM accepts both commutations, and the LLVM tests in:
test/CodeGen/AArch64/arm64-fmadd.ll
test/CodeGen/AArch64/fp-dp3.ll
test/CodeGen/AArch64/neon-fma.ll
test/CodeGen/ARM/fusedMAC.ll
already check either the new one only, or both.
Also verified against the test-suite unittests.
llvm-svn: 266807
isinf (is infinite) and isfinite should be implemented with the same function
except we change the comparison operator.
See PR27145 for more details:
https://llvm.org/bugs/show_bug.cgi?id=27145
Ref: forked off of the discussion in D18513.
Differential Revision: http://reviews.llvm.org/D18648
llvm-svn: 265675
Summary: See LLVM change D18775 for details, this change depends on it.
Reviewers: jyknight, reames
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18776
llvm-svn: 265569
These functions cannot be implemented as atomicrmw or cmpxchg
instructions, so they are implemented as a call to the NVVM intrinsics
@llvm.nvvm.atomic.load.inc.32.p0i32 and
@llvm.nvvm.atomic.load.dec.32.p0i32.
Patch by Jason Henline.
Reviewers: jlebar
Differential Revision: http://reviews.llvm.org/D18322
llvm-svn: 264009
Includes new built-in, conversion of built-in to target-independent intrinsic
and update in the header file. Tests are also updated. There is a second part in
the backend for which I will post a separate code-review. BACKEND PART SHOULD BE
COMMITTED FIRST.
Phabricator: http://reviews.llvm.org/D17816
llvm-svn: 263051
Fix arc patch fuzz error.
Summary:
Support for the pipe built-in functions for OpenCL 2.0.
The pipe builtin functions may have infinite kinds of element types, one approach
would be to just generate calls that would always use generic types such as void*.
This patch is based on bader's opencl support patch on SPIR-V branch.
Reviewers: Anastasia, pekka.jaaskelainen
Subscribers: keryell, bader, cfe-commits
Differential Revision: http://reviews.llvm.org/D15914
llvm-svn: 258782
Summary:
Support for the pipe built-in functions for OpenCL 2.0.
The pipe builtin functions may have infinite kinds of element types, one approach
would be to just generate calls that would always use generic types such as void*.
This patch is based on bader's opencl support patch on SPIR-V branch.
Reviewers: Anastasia, pekka.jaaskelainen
Subscribers: keryell, bader, cfe-commits
Differential Revision: http://reviews.llvm.org/D15914
llvm-svn: 258773
Keep the ones still used by libclc around for now.
Emit the new amdgcn intrinsic name if not targeting r600,
in which case the old AMDGPU name is still used.
llvm-svn: 258560
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
Function__builtin_signbit returns wrong value for type ppcf128 on big endian
machines. This patch fixes how value is generated in that case.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D14149
llvm-svn: 252307
only one of a group of possibilities.
This changes the syntax in the builtin files to represent:
, as the and operator
| as the or operator
The former syntax matches how the backend tablegen files represent
multiple subtarget features being required.
Updated the builtin and intrinsic headers accordingly for the new
syntax.
llvm-svn: 251388
match the feature set of the function that they're being called from.
This ensures that we can effectively diagnose some[1] code that would
instead ICE in the backend with a failure to select message.
Example:
__m128d foo(__m128d a, __m128d b) {
return __builtin_ia32_addsubps(b, a);
}
compiled for normal x86_64 via:
clang -target x86_64-linux-gnu -c
would fail to compile in the back end because the normal subtarget
features for x86_64 only include sse2 and the builtin requires sse3.
[1] We're still not erroring on:
__m128i bar(__m128i const *p) { return _mm_lddqu_si128(p); }
where we should fail and error on an always_inline function being
inlined into a function that doesn't support the subtarget features
required.
llvm-svn: 250473
Summary: __nvvm_atom_cas_* returns the old value instead of whether the swap succeeds.
Reviewers: eliben, tra
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D13306
llvm-svn: 248951
This is the clang commit associated with llvm r248887.
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D13127
llvm-svn: 248888
* adds -aux-triple option to specify target triple
* propagates aux target info to AST context and Preprocessor
* pulls in target specific preprocessor macros.
* pulls in target-specific builtins from aux target.
* sets appropriate host or device attribute on builtins.
Differential Revision: http://reviews.llvm.org/D12917
llvm-svn: 248299
Summary:
This change adds support for `__builtin_ms_va_list`, a GCC extension for
variadic `ms_abi` functions. The existing `__builtin_va_list` support is
inadequate for this because `va_list` is defined differently in the Win64
ABI vs. the System V/AMD64 ABI.
Depends on D1622.
Reviewers: rsmith, rnk, rjmccall
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D1623
llvm-svn: 247941
Summary:
Currently clang provides no general way to generate nontemporal loads/stores.
There are some architecture specific builtins for doing so (e.g. in x86), but
there is no way to generate non-temporal store on, e.g. AArch64. This patch adds
generic builtins which are expanded to a simple store with '!nontemporal'
attribute in IR.
Differential Revision: http://reviews.llvm.org/D12313
llvm-svn: 247104
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
This implements basic support for compiling (though not yet assembling
or linking) for a WebAssembly target. Note that ABI details are not yet
finalized, and may change.
Differential Revision: http://reviews.llvm.org/D12002
llvm-svn: 246814
This patch depends on r246688 (D12341).
The goal is to make LLVM generate different code for these functions for a target that
has cheap branches (see PR23827 for more details):
int foo();
int normal(int x, int y, int z) {
if (x != 0 && y != 0) return foo();
return 1;
}
int crazy(int x, int y) {
if (__builtin_unpredictable(x != 0 && y != 0)) return foo();
return 1;
}
Differential Revision: http://reviews.llvm.org/D12458
llvm-svn: 246699
GCC 4.8+ has a PowerPC-specific intrinsic, __builtin_ppc_get_timebase, to do
what Clang's __builtin_readcyclecounter does. For compatibility with code that
uses GCC's spelling (including glibc), support it as well.
Partially fixes PR23681.
llvm-svn: 246510
We had "vcvt_f16" and "VCVT_HIGH_F16": for other FP types, this naming
is used for intrinsics with integer overloads. The FP->FP conversions,
on the other hand, use the full "vcvt_f32_f64" name instead.
Use the same naming convention for the f16<->f32 conversions.
While there, reorder the definitions a little bit.
llvm-svn: 245763
- Use cached LLVM types
- Turn SmallVectors into Arrays/ArrayRef if the size is static
- Use ConstantInt::get's implicit splatting for vector types
No functionality change intended.
llvm-svn: 243425
__builtin_frame_address requires its argument to be a constant
expression which already implies that it cannot have undefined behavior.
However, we used EmitScalarExpr to emit the argument causing UBSan to
try to check for overflow.
Instead, use the constant expression emission system.
This fixes PR24256.
llvm-svn: 243206
This patch corresponds to review:
http://reviews.llvm.org/D11184
A number of new interfaces for altivec.h (as mandated by the ABI):
vector float vec_cpsgn(vector float, vector float)
vector double vec_cpsgn(vector double, vector double)
vector double vec_or(vector bool long long, vector double)
vector double vec_or(vector double, vector bool long long)
vector double vec_re(vector double)
vector signed char vec_cntlz(vector signed char)
vector unsigned char vec_cntlz(vector unsigned char)
vector short vec_cntlz(vector short)
vector unsigned short vec_cntlz(vector unsigned short)
vector int vec_cntlz(vector int)
vector unsigned int vec_cntlz(vector unsigned int)
vector signed long long vec_cntlz(vector signed long long)
vector unsigned long long vec_cntlz(vector unsigned long long)
vector signed char vec_nand(vector bool signed char, vector signed char)
vector signed char vec_nand(vector signed char, vector bool signed char)
vector signed char vec_nand(vector signed char, vector signed char)
vector unsigned char vec_nand(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector unsigned char)
vector short vec_nand(vector bool short, vector short)
vector short vec_nand(vector short, vector bool short)
vector short vec_nand(vector short, vector short)
vector unsigned short vec_nand(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector unsigned short)
vector int vec_nand(vector bool int, vector int)
vector int vec_nand(vector int, vector bool int)
vector int vec_nand(vector int, vector int)
vector unsigned int vec_nand(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector unsigned int)
vector signed long long vec_nand(vector bool long long, vector signed long long)
vector signed long long vec_nand(vector signed long long, vector bool long long)
vector signed long long vec_nand(vector signed long long, vector signed long long)
vector unsigned long long vec_nand(vector bool long long, vector unsigned long long)
vector unsigned long long vec_nand(vector unsigned long long, vector bool long long)
vector unsigned long long vec_nand(vector unsigned long long, vector unsigned long long)
vector signed char vec_orc(vector bool signed char, vector signed char)
vector signed char vec_orc(vector signed char, vector bool signed char)
vector signed char vec_orc(vector signed char, vector signed char)
vector unsigned char vec_orc(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector unsigned char)
vector short vec_orc(vector bool short, vector short)
vector short vec_orc(vector short, vector bool short)
vector short vec_orc(vector short, vector short)
vector unsigned short vec_orc(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector unsigned short)
vector int vec_orc(vector bool int, vector int)
vector int vec_orc(vector int, vector bool int)
vector int vec_orc(vector int, vector int)
vector unsigned int vec_orc(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector unsigned int)
vector signed long long vec_orc(vector bool long long, vector signed long long)
vector signed long long vec_orc(vector signed long long, vector bool long long)
vector signed long long vec_orc(vector signed long long, vector signed long long)
vector unsigned long long vec_orc(vector bool long long, vector unsigned long long)
vector unsigned long long vec_orc(vector unsigned long long, vector bool long long)
vector unsigned long long vec_orc(vector unsigned long long, vector unsigned long long)
vector signed char vec_div(vector signed char, vector signed char)
vector unsigned char vec_div(vector unsigned char, vector unsigned char)
vector signed short vec_div(vector signed short, vector signed short)
vector unsigned short vec_div(vector unsigned short, vector unsigned short)
vector signed int vec_div(vector signed int, vector signed int)
vector unsigned int vec_div(vector unsigned int, vector unsigned int)
vector signed long long vec_div(vector signed long long, vector signed long long)
vector unsigned long long vec_div(vector unsigned long long, vector unsigned long long)
vector unsigned char vec_mul(vector unsigned char, vector unsigned char)
vector unsigned int vec_mul(vector unsigned int, vector unsigned int)
vector unsigned long long vec_mul(vector unsigned long long, vector unsigned long long)
vector unsigned short vec_mul(vector unsigned short, vector unsigned short)
vector signed char vec_mul(vector signed char, vector signed char)
vector signed int vec_mul(vector signed int, vector signed int)
vector signed long long vec_mul(vector signed long long, vector signed long long)
vector signed short vec_mul(vector signed short, vector signed short)
vector signed long long vec_mergeh(vector signed long long, vector signed long long)
vector signed long long vec_mergeh(vector signed long long, vector bool long long)
vector signed long long vec_mergeh(vector bool long long, vector signed long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergeh(vector bool long long, vector unsigned long long)
vector double vec_mergeh(vector double, vector double)
vector double vec_mergeh(vector double, vector bool long long)
vector double vec_mergeh(vector bool long long, vector double)
vector signed long long vec_mergel(vector signed long long, vector signed long long)
vector signed long long vec_mergel(vector signed long long, vector bool long long)
vector signed long long vec_mergel(vector bool long long, vector signed long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergel(vector bool long long, vector unsigned long long)
vector double vec_mergel(vector double, vector double)
vector double vec_mergel(vector double, vector bool long long)
vector double vec_mergel(vector bool long long, vector double)
vector signed int vec_pack(vector signed long long, vector signed long long)
vector unsigned int vec_pack(vector unsigned long long, vector unsigned long long)
vector bool int vec_pack(vector bool long long, vector bool long long)
llvm-svn: 242171
This is needed to use clang's command line option "-ftrap-function" for LTO and
enable changing the trap function name on a per-call-site basis.
rdar://problem/21225723
Differential Revision: http://reviews.llvm.org/D10831
llvm-svn: 241306
This matches the implementation of the gcc support for the same
feature, including checking the values set up by libgcc at runtime.
The structure looks like this:
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
with a set of enums to match various fields that are field out after
parsing the output of the cpuid instruction.
This also adds a set of errors checking for valid input (and cpu).
compiler-rt support for this and the other builtins in this family
(__builtin_cpu_init and __builtin_cpu_is) are forthcoming.
llvm-svn: 240994
This patch corresponds to review:
http://reviews.llvm.org/D10637
This is the first round of additions of missing builtins listed in the ABI document. More to come (this builds onto what seurer already addes). This patch adds:
vector signed long long vec_abs(vector signed long long)
vector double vec_abs(vector double)
vector signed long long vec_add(vector signed long long, vector signed long long)
vector unsigned long long vec_add(vector unsigned long long, vector unsigned long long)
vector double vec_add(vector double, vector double)
vector double vec_and(vector bool long long, vector double)
vector double vec_and(vector double, vector bool long long)
vector double vec_and(vector double, vector double)
vector signed long long vec_and(vector signed long long, vector signed long long)
vector double vec_andc(vector bool long long, vector double)
vector double vec_andc(vector double, vector bool long long)
vector double vec_andc(vector double, vector double)
vector signed long long vec_andc(vector signed long long, vector signed long long)
vector double vec_ceil(vector double)
vector bool long long vec_cmpeq(vector double, vector double)
vector bool long long vec_cmpge(vector double, vector double)
vector bool long long vec_cmpge(vector signed long long, vector signed long long)
vector bool long long vec_cmpge(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmpgt(vector double, vector double)
vector bool long long vec_cmple(vector double, vector double)
vector bool long long vec_cmple(vector signed long long, vector signed long long)
vector bool long long vec_cmple(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmplt(vector double, vector double)
vector bool long long vec_cmplt(vector signed long long, vector signed long long)
vector bool long long vec_cmplt(vector unsigned long long, vector unsigned long long)
llvm-svn: 240821
Integer variants are implemented as atomicrmw or cmpxchg instructions.
Atomic add for floating point (__nvvm_atom_add_gen_f()) is implemented
as a call to an overloaded @llvm.nvvm.atomic.load.add.f32.* LVVM
intrinsic.
Differential Revision: http://reviews.llvm.org/D10666
llvm-svn: 240669
This fixes a serious bug in r240462: checking the BuiltinID for
ARM::BI_MoveToCoprocessor* in EmitBuiltinExpr() ignores the fact that
each target has an overlapping range of the BuiltinID values. That check
can trigger for builtins from other targets, leading to very bad
behavior.
Part of the reason I did not implement r240462 this way to begin with is
the special handling of the last argument for Neon builtins. In this
change, I have factored out the check to see which builtins have that
extra argument into a new HasExtraNeonArgument() function. There is still
some awkwardness in having to check for those builtins in two separate
places, i.e., once to see if the extra argument is present and once to
generate the appropriate IR, but this seems much cleaner than my previous
patch.
llvm-svn: 240522
The Microsoft-extension _MoveToCoprocessor and _MoveToCoprocessor2
builtins take the register value to be moved as the first argument,
but the corresponding mcr and mcr2 LLVM intrinsics expect that value
to be the third argument. Handle this as a special case, while still
leaving those intrinsics as generic MSBuiltins. I considered the
alternative of handling these in EmitARMBuiltinExpr, but that does
not work well for the follow-up change that I'm going to make to improve
the error handling for PR22560 -- we need the GetBuiltinType() checks
for ICEArguments, and the ARM version of that code is only used for
Neon intrinsics where the last argument is special and not
checked in the normal way.
llvm-svn: 240462
in section 10.1, __arm_{w,r}sr{,p,64}.
This includes arm_acle.h definitions with builtins and codegen to support
these, the intrinsics are implemented by generating read/write_register calls
which get appropriately lowered in the backend based on the register string
provided. SemaChecking is also implemented to fault invalid parameters.
Differential Revision: http://reviews.llvm.org/D9697
llvm-svn: 239737
On ARM/AArch64, we currently always use EmitScalarExpr for the immediate
builtin arguments, instead of directly emitting the constant. When the
overflow sanitizer is enabled, this generates overflow intrinsics
instead of constants, breaking assumptions in various places.
Instead, use the knowledge of "immediates" to directly emit a constant:
- teach the tablegen backend to emit the "immediate" modifiers
- use those modifiers in the NEON CodeGen, on ARM and AArch64.
Fixes PR23517.
Differential Revision: http://reviews.llvm.org/D10045
llvm-svn: 239002
This adds low-level builtins to allow access to all of the z13 vector
instructions. Note that instructions whose semantics can be described
by standard C (including clang extensions) do not get any builtins.
For each instructions whose semantics *cannot* (fully) be described, we
define a builtin named __builtin_s390_<insn> that directly maps to this
instruction. These are intended to be compatible with GCC.
For instructions that also set the condition code, the builtin will take
an extra argument of type "int *" at the end. The integer pointed to by
this argument will be set to the post-instruction CC value.
For many instructions, the low-level builtin is mapped to the corresponding
LLVM IR intrinsic. However, a number of instructions can be represented
in standard LLVM IR without requiring use of a target intrinsic.
Some instructions require immediate integer operands within a certain
range. Those are verified at the Sema level.
Based on a patch by Richard Sandiford.
llvm-svn: 236532
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
The argument range checks for the HTM and Crypto builtins were implemented in
CGBuiltin.cpp, not in Sema. This change moves them to the appropriate location
in SemaChecking.cpp. It requires the creation of a new method in the Sema class
to do checks for PPC-specific builtins.
http://reviews.llvm.org/D8672
llvm-svn: 233586
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
Somehow, we never managed to implement this fully. We could constant
fold it like crazy, including constant folding complex arguments, etc.
But if you actually needed to generate code for it, error.
I've implemented it using the somewhat obvious lowering. Happy for
suggestions on a more clever way to lower this.
Now, what you might ask does this have to do with modules? Fun story. So
it turns out that libstdc++ actually uses __builtin_isinf_sign to
implement std::isinf when in C++98 mode, but only inside of a template.
So if we're lucky, and we never instantiate that, everything is good.
But once we try to instantiate that template function, we need this
builtin. All of my customers at least are using C++11 and so they never
hit this code path.
But what does that have to do with modules? Fun story. So it turns out
that with modules we actually observe a bunch of bugs in libstdc++ where
their <cmath> header clobbers things exposed by <math.h>. To fix these,
we have to provide global function definitions to replace the macros
that C99 would have used. And it turns out that ::isinf needs to be
implemented using the exact semantics used by the C++98 variant of
std::isinf. And so I started to fix this bug in libstdc++ and ceased to
be able to compile libstdc++ with Clang.
The yaks are legion.
llvm-svn: 232778
std::make_exception_ptr calls std::__GetExceptionInfo in order to figure
out how to properly copy the exception object.
Differential Revision: http://reviews.llvm.org/D8280
llvm-svn: 232188
Originally we were using the same GCC builtins to lower this AVX2 vector
intrinsic. Instead we will now lower it directly to a vector shuffle.
This will not only allow LLVM to generate better code, but it will also allow us
to remove the GCC intrinsics.
Reviewed by Andrea
This is related to rdar://problem/18742778.
llvm-svn: 231081
llvm.eh.sjlj.setjmp / llvm.eh.sjlj.longjmp, if the backend is known to
support them outside the Exception Handling context. The default
handling in LLVM codegen doesn't work and will create incorrect code.
The ARM backend on the other hand will assert if the intrinsics are
used.
llvm-svn: 230255
Previously we would simply double-emit the body of the __finally block,
but that doesn't work when it contains any kind of Decl, which we can't
double emit.
This fixes that by emitting the block once and branching into a shared
code region and then branching back out.
llvm-svn: 228222
On targets which use the MSVCRT, setjmp is a macro which expands to
_setjmp or _setjmpex.
_setjmp and _setjmpex have a secret, hidden argument which is not listed
in the function prototype on X64 and WoA. This hidden argument always
seems to be the frame pointer.
_setjmpex isn't used on X86, _setjmp is magically replaced with a call
to _setjmp3. The second argument is zero for 'normal' setjmp/longjmp
pairs, otherwise it is a count of additional variadic arguments. This
is used when setjmp appears inside of a try or __try.
It is not safe to use a pointer to setjmp because _setjmp, _setjmpex and
_setmp3 are not compatible with setjmp.
llvm-svn: 227426
The backend won't run LowerExpect on -O0. In a debug LTO build, this results in llvm.expect intrinsics being in the LTO IR which doesn't know how to optimize them.
Thanks to Chandler for the suggestion and review.
Differential revision: http://reviews.llvm.org/D7183
llvm-svn: 227135
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
This still lower to the same intrinsics as before.
This is preparation for bounds checking the immediate on the avx version of the builtin so we don't pass illegal immediates into the backend. Since SSE uses a smaller size immediate its not possible to bounds check when using a shared builtin. Rather than creating a clang specific builtin for the different immediate, I decided (after consulting with Chandler) that it was better to match gcc.
llvm-svn: 224879
For MSVC compatibility, add the `__emit' builtin. This is used in the Windows
SDK headers, and must therefore be implemented as a builtin rather than an
intrinsic.
The `__emit' builtin provides a mechanism to emit a 16-bit opcode instruction
into the stream. The value must be a compile time constant expression. No
guarantees are made about the CPU and memory states after the execution of the
instruction.
Due to the unchecked nature of the builtin, only support this on Windows on ARM.
llvm-svn: 224438
The extension has the following syntax:
__builtin_call_with_static_chain(Call, Chain)
where Call must be a function call expression and Chain must be of pointer type
This extension performs a function call Call with a static chain pointer
Chain passed to the callee in a designated register. This is useful for
calling foreign language functions whose ABI uses static chain pointers
(e.g. to implement closures).
Differential Revision: http://reviews.llvm.org/D6332
llvm-svn: 224167
Create a helper function to construct a value for the ARM hint intrinsic
rather than inling the construction. In order to avoid the use of the sentinel
value, inline the use of intrinsic instruction retrieval. NFC.
llvm-svn: 223338
Richard rejected my Sema change to interpret an integer literal zero in
a varargs context as a null pointer, so -Wsentinel sees an integer
literal zero and fires off a warning. Only CodeGen currently knows that
it promotes integer literal zeroes in this context to pointer size on
Windows. I didn't want to teach -Wsentinel about that compatibility
hack. Therefore, I'm migrating to C++11 nullptr.
llvm-svn: 223079
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New code in altivec.h defines these in terms of new builtins, which
are themselves defined in BuiltinsPPC.def. The builtins are converted
to LLVM intrinsics in CGBuiltin.cpp. Additional code is added to
builtins-ppc-vsx.c to verify the correct generation of the intrinsics.
Note that I moved the other VSX builtins so all VSX builtins will be
alphabetical in their own section in BuiltinsPPC.def.
There is a companion patch for LLVM.
llvm-svn: 221768
Summary:
This change makes CodeGenFunction::EmitCheck() take several
conditions that needs to be checked (all of them need to be true),
together with sanitizer kinds these checks are for. This would allow
to split one call into UBSan runtime into several calls in case
different sanitizer kinds would have different recoverability
settings.
Tests should be fixed accordingly, I'm working on it.
Test Plan: regression test suite.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6219
llvm-svn: 221716
Make sure CodeGenFunction::EmitCheck() knows which sanitizer
it emits check for. Make CheckRecoverableKind enum an
implementation detail and move it away from header.
Currently CheckRecoverableKind is determined by the type of
sanitizer ("unreachable" and "return" are unrecoverable,
"vptr" is always-recoverable, all the rest are recoverable).
This will change in future if we allow to specify which sanitizers
are recoverable, and which are not by -fsanitize-recover= flag.
No functionality change.
llvm-svn: 221635
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
mingw64's headers implement fabs by calling __builtin_fabs, so using the
library call results in an infinite loop. If the backend legalizes
@llvm.fabs as a call to fabs later, things should work out, as the crt
provides a definition.
llvm-svn: 221206
SanitizerOptions is not even a POD now, so having global variable of
this type, is not nice. Instead, provide a regular constructor and clear()
method, and let each CodeGenFunction has its own copy of SanitizerOptions
it uses.
llvm-svn: 220920
The Windows NT SDK uses __readfsdword and declares it as a compiler provided
builtin (#pragma intrinsic(__readfsword). Because intrin.h is not referenced
by winnt.h, it is not possible to provide an out-of-line definition for the
intrinsic. Provide a proper compiler builtin definition.
llvm-svn: 220859
Prior to GCC 4.4, __sync_fetch_and_nand was implemented as:
{ tmp = *ptr; *ptr = ~tmp & value; return tmp; }
but this was changed in GCC 4.4 to be:
{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; }
in response to this change, support for sync_fetch_and_nand (and
sync_nand_and_fetch) was removed in r99522 in order to avoid miscompiling code
depending on the old semantics. However, at this point:
1. Many years have passed, and the amount of code relying on the old
semantics is likely smaller.
2. Through the work of many contributors, all LLVM backends have been updated
such that "atomicrmw nand" provides the newer GCC 4.4+ semantics (this process
was complete July of 2014 (added to the release notes in r212635).
3. The lack of this intrinsic is now a needless impediment to porting codes
from GCC to Clang (I've now seen several examples of this).
It is true, however, that we still set GNUC_MINOR to 2 (corresponding to GCC
4.2). To compensate for this, and to address the original concern regarding
code relying on the old semantics, I've added a warning that specifically
details the fact that the semantics have changed and that we provide the newer
semantics.
Fixes PR8842.
llvm-svn: 218905
AFAICT the semantics of frem match libm's fmod.
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
llvm-svn: 218488
This makes use of the recently-added @llvm.assume intrinsic to implement a
__builtin_assume(bool) intrinsic (to provide additional information to the
optimizer). This hooks up __assume in MS-compatibility mode to mirror
__builtin_assume (the semantics have been intentionally kept compatible), and
implements GCC's __builtin_assume_aligned as assume((p - o) & mask == 0). LLVM
now contains special logic to deal with assumptions of this form.
llvm-svn: 217349
This patch adds support for the 32bit numeric max/min and directed round-to-integral NEON intrinsics that were added as part of v8, along with unit tests.
Patch by Graham Hunter!
llvm-svn: 217242
Using the intrinsic allows the SelectionDAGBuilder to turn this call
into the FABS Node and also the intrinsic is something the vectorizer knows
how to vectorize.
This patch also sets the readnone attribute on this call, which should
enable additional optmizations.
llvm-svn: 217042
PowerPC uses the special PPC_FP128 type for long double on Linux, which is
composed of two 64-bit doubles. The higher-order double (which contains the
overall sign) comes first, and so the __builtin_signbitl implementation
requires special handling to extract the sign bit.
Fixes PR20691.
llvm-svn: 216341
Summary:
This is a first small step towards passing generic "Expr" instead of
ArgBeg/ArgEnd pair into EmitCallArgs() family of methods. Having "Expr" will
allow us to get the corresponding FunctionDecl and its ParmVarDecls,
thus allowing us to alter CodeGen depending on the function/parameter
attributes.
No functionality change.
Test Plan: regression test suite
Reviewers: rnk
Reviewed By: rnk
Subscribers: aemerson, cfe-commits
Differential Revision: http://reviews.llvm.org/D4915
llvm-svn: 216214
Merge vrshr_n_v and vqshlu_n_v with ARM.
Remove FIXME comments for others as they can't actually be shared.
NFC.
Differential Revision: http://reviews.llvm.org/D4697
llvm-svn: 214173
The main subtlety here is that the Darwin tools still need to be given "-arch
arm64" rather than "-arch aarch64". Fortunately this already goes via a custom
function to handle weird edge-cases in other architectures, and it tested.
I removed a few arm64_be tests because that really isn't an interesting thing
to worry about. No-one using big-endian is also referring to the target as
arm64 (at least as far as toolchains go). Mostly they date from when arm64 was
a separate target and we *did* need a parallel name simply to test it at all.
Now aarch64_be is sufficient.
llvm-svn: 213744
This is used to mark the instructions emitted by Clang to implement
variety of UBSan checks. Generally, we don't want to instrument these
instructions with another sanitizers (like ASan).
Reviewed in http://reviews.llvm.org/D4544
llvm-svn: 213291
Clang supports __assume, at least at the semantic level, when MS extensions are
enabled. Unfortunately, trying to actually compile code using __assume would
result in this error:
error: cannot compile this builtin function yet
__assume is an optimizer hint, and can be ignored at the IR level. Until LLVM
supports assumptions at the IR level, a noop lowering is valid, and that is
what is done here.
llvm-svn: 213206
This patch implements __builtin_arm_nop intrinsic for AArch32 and AArch64,
which generates hint 0x0, the alias of NOP instruction.
This intrinsic is necessary to implement ACLE __nop intrinsic.
Differential Revision: http://reviews.llvm.org/D4495
llvm-svn: 212947
This adds support for simple MSVC compatibility mode intrinsics. These
intrinsics are simple in that they are either directly passed through to the
annotated MSBuiltin intrinsic or they mirror existing GCC builtins.
llvm-svn: 212378
This completes the infrastructure for the new MSBuiltin aliases in the
instruction definitions. These behave similar to the GCCBuiltin in that they
can be implicitly constructed without special handling unless needed.
With this change it is possible to annotate an LLVM intrinsic in the backend
instruction definitions and indicate it as a builtin in the Builtin*.def files
in clang via LANGBUILTIN. That will automatically pass through the instruction
much as a GCCBuiltin.
Note that there is no need for the special handling for ensuring that the
compatibility flag is enabled since the filtering on the LANGBUILTIN will
automatically prevent the intrinsic from bleeding into non-MS compatible
compiler invocations.
llvm-svn: 212359
This corrects SVN r212196's naming change to use the proper prefix of
`__builtin_arm_` instead of `__builtin_`.
Thanks to Yi Kong for pointing out the incorrect naming!
llvm-svn: 212253
This extends the target builtin support to allow language specific annotations
(i.e. LANGBUILTIN). This is to allow MSVC compatibility whilst retaining the
ability to have EABI targets use a __builtin_ prefix. This is merely to allow
uniformity in the EABI case where the unprefixed name is provided as an alias in
the header.
llvm-svn: 212196
ARMv8 adds (to both AArch32 and AArch64) acquiring and releasing
variants of the exclusive operations, in line with the C++11 memory
model.
This adds support for two new intrinsics to expose them to C & C++
developers directly: __builtin_arm_ldaex and __builtin_arm_stlex, in
direct analogy with the versions with no implicit barrier.
rdar://problem/15885451
llvm-svn: 212175
Add support for _InterlockedCompareExchangePointer, _InterlockExchangePointer,
_InterlockExchange. These are available as a compiler intrinsic on ARM and x86.
These are used directly by the Windows SDK headers without use of the intrin
header.
llvm-svn: 211216
This is a minimal fix for clang. I'll soon add support for generating
weak variants when requested, but that's not really necessary for the
LLVM change in isolation.
llvm-svn: 210907
to the normal non-placement ::operator new and ::operator delete, but allow
optimizations like new-expressions and delete-expressions do.
llvm-svn: 210137