This patch extends SymbolFileBreakpad::AddSymbols to include the symbols
from the FUNC records too. These symbols come from the debug info and
have a size associated with them, so they are given preference in case
there is a PUBLIC record for the same address.
To achieve this, I first pre-process the symbols into a temporary
DenseMap, and then insert the uniqued symbols into the module's symtab.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56590
llvm-svn: 351781
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This centralizes parsing of breakpad records, which was previously
spread out over ObjectFileBreakpad and SymbolFileBreakpad.
For each record type X there is a separate breakpad::XRecord class, and
an associated parse function. The classes just store the information in
the breakpad records in a more accessible form. It is up to the users to
determine what to do with that data.
This separation also made it possible to write some targeted tests for
the parsing code, which was previously unaccessible, so I write a couple
of those too.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: mgorny, fedor.sergeev, lldb-commits
Differential Revision: https://reviews.llvm.org/D56844
llvm-svn: 351541
In the original reproducer design, I expected providers to be more
dynamic than they turned out. For example, we don't have any instances
where one provider has multiple files. Additionally, I expected there to
be less locality between capture and replay, with the provider being
defined in one place and the replay code to live in another. Both
contributed to the design of the provider info.
This patch refactors the reproducer info to be something static. This
means less magic strings and better type checking. The new design still
allows for the capture and replay code to live in different places as
long as they both have access to the new statically defined info class.
I didn't completely get rid of the index, because it is useful for (1)
sanity checking and (2) knowing what files are used by the reproducer.
Differential revision: https://reviews.llvm.org/D56814
llvm-svn: 351501
This reapplies commit r351330, which was reverted due to a failing test on
macos. The failure was because the SymbolVendor used on MacOS was stricter than
the default (or ELF) symbol vendor, and rejected the symbol file because it's
UUID did not match the object file.
This version of the patch adds a uuid load command to the test macho file to
make sure the UUIDs match.
llvm-svn: 351447
This reapplies r350802, which was reverted because of issues with
parsing posix-style paths on windows hosts (and vice-versa). These have
since been fixed in r351328, and lldb should now recognise the path
style used in a dwarf compile unit correctly.
llvm-svn: 351435
This patch changes the behavior when printing C++ function references:
where we previously would get a <could not determine size>, there is
now a <no summary available>. It's not clear to me whether this is a
bug or an omission, but it's one step further than LLDB previously
got.
Differential Revision: https://reviews.llvm.org/D56798
llvm-svn: 351376
Summary:
Adding a breakpad symbol file to an existing MachO module with "target symbols
add" currently works only if one's host platform is a mac. This is
because SymbolVendorMacOSX (which is the one responsible for loading
symbols for MachO files) is conditionally compiled for the mac platform.
While we will sooner or later have a special symbol vendor for breakpad
files (to enable more advanced searching), and so this flow could be
made to work through that, it's not clear to me whether this should be a
requirement for the "target symbols add" flow to work. After all, since
the user has explicitly specified the symbol file to use, the symbol
vendor plugin's job is pretty much done.
This patch teaches the default symbol vendor to respect module's symbol
file spec, and load the symbol from that file if it is specified (and no
plugin requests any special handling).
Reviewers: clayborg, zturner, lemo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56589
llvm-svn: 351330
Summary:
If we opened a file which was produced on system with different path
syntax, we would parse the paths from the debug info incorrectly.
The reason for that is that we would parse the paths as they were
native. For example this meant that on linux we would treat the entire
windows path as a single file name with no directory component, and then
we would concatenate that with the single directory component from the
DW_AT_comp_dir attribute. When parsing posix paths on windows, we would
at least get the directory separators right, but we still would treat
the posix paths as relative, and concatenate them where we shouldn't.
This patch attempts to remedy this by guessing the path syntax used in
each compile unit. (Unfortunately, there is no info in DWARF which would
give the definitive path style used by the produces, so guessing is all
we can do.) Currently, this guessing is based on the DW_AT_comp_dir
attribute of the compile unit, but this can be refined later if needed
(for example, the DW_AT_name of the compile unit may also contain some
useful info). This style is then used when parsing the line table of
that compile unit.
This patch is sufficient to make the line tables come out right, and
enable breakpoint setting by file name work correctly. Setting a
breakpoint by full path still has some kinks (specifically, using a
windows-style full path will not work on linux because the path will be
parsed as a linux path), but this will require larger changes in how
breakpoint setting works.
Reviewers: clayborg, zturner, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D56543
llvm-svn: 351328
The code in LLDB assumes that CompilerType and friends use the size 0
as a sentinel value to signal an error. This works for C++, where no
zero-sized type exists, but in many other programming languages
(including I believe C) types of size zero are possible and even
common. This is a particular pain point in swift-lldb, where extra
code exists to double-check that a type is *really* of size zero and
not an error at various locations.
To remedy this situation, this patch starts by converting
CompilerType::getBitSize() and getByteSize() to return an optional
result. To avoid wasting space, I hand-rolled my own optional data
type assuming that no type is larger than what fits into 63
bits. Follow-up patches would make similar changes to the ValueObject
hierarchy.
rdar://problem/47178964
Differential Revision: https://reviews.llvm.org/D56688
llvm-svn: 351214
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
Every callsite was passing an empty SymbolContext, so this parameter
had no effect. Inside the DWARF implementation of this function,
however, there was one codepath that checked members of the
SymbolContext. Since no call-sites actually ever used this
functionality, it was essentially dead code, so I've deleted this
code path as well.
llvm-svn: 351132
This method took a SymbolContext but only actually cared about the
case where the m_function member was set. Furthermore, it was
intended to be implemented to parse blocks recursively despite not
documenting this in its name. So we change the name to indicate
that it should be recursive, while also limiting the function
parameter to be a Function&. This lets the caller know what is
required to use it, as well as letting new implementers know what
kind of inputs they need to be prepared to handle.
llvm-svn: 351131
Summary:
This patch allows to retrieve an address object for `ValueObject`'s children
retrieved through e.g. `GetChildAtIndex` or `GetChildMemberWithName`. It just
uses the corresponding method of the implementation object `m_impl` to achieve
that.
Reviewers: zturner, JDevlieghere, clayborg, labath, serge-sans-paille
Reviewed By: clayborg
Subscribers: leonid.mashinskiy, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D56147
llvm-svn: 351065
Previously all of these functions accepted a SymbolContext&.
While a CompileUnit is one member of a SymbolContext, there
are also many others, and by passing such a monolithic parameter
in this way it makes the requirements and assumptions of the
API unclear for both callers as well as implementors.
All these methods need is a CompileUnit. By limiting the
parameter type in this way, we simplify the code as well as
make it self-documenting for both implementers and users.
Differential Revision: https://reviews.llvm.org/D56564
llvm-svn: 350943
Summary:
This commit adds the glue code necessary to integrate the
SymbolFileBreakpad into the plugin system. Most of the methods are
stubbed out. The only method implemented method is AddSymbols, which
parses the PUBLIC "section" of the breakpad "object file", and fills out
the Module's symtab.
To enable testing this, I've made two additional changes:
- dump Symtab from the SymbolVendor class. The symtab was already being
dumped as a part of the object file dump, but that happened before
symbol vendor kicked in, so it did not reflect any symbols added
there.
- add ability to explicitly specify the external symbol file in
lldb-test (so that the object file could be linked with the breakpad
symbol file). To make things simpler, I've changed lldb-test from
consuming multiple inputs (and dumping their symbols) to having it
just process a single file per invocation. This was not a problem
since everyone was using it that way already.
Reviewers: clayborg, zturner, lemo, markmentovai, amccarth
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D56173
llvm-svn: 350924
The code was assuming that the elf file will have a PT_LOAD segment
starting from the first byte of the file. While this is true for files
generated by most linkers (it's a way of saving space), it is not a
requirement. And files not satisfying this constraint can still be
perfectly executable. yaml2obj is one of the tools which produces files
like this.
This patch relaxes the check in ObjectFileELF to take the address of the
first PT_LOAD segment as the base address of the object (instead of the
one with the offset 0). Since the PT_LOAD segments are supposed to be
sorted according to the VM address, this entry will also be the one with
the lowest VM address.
If we ever run into files which don't have the PT_LOAD segments sorted,
we can easily change this code to return the lowest VM address as the
base address (if that is the correct thing to do for these files).
llvm-svn: 350923
The function SymbolFile::ParseTypes previously accepted a SymbolContext.
This makes it extremely difficult to implement faithfully, because you
have to account for all possible combinations of members being set in
the SymbolContext. On the other hand, no clients of this function
actually care about implementing this function to this strict of a
standard. AFAICT, there is actually only 1 client in the entire
codebase, and it is the function ParseAllDebugSymbols, which is itself
only called for testing purposes when dumping information. At this
call-site, the only field it sets is the CompileUnit, meaning that an
implementer of a SymbolFile need not worry about any examining or
handling any other fields which might be set.
By restricting this API to accept exactly a CompileUnit& and nothing
more, we can simplify the life of new SymbolFile plugin implementers by
making it clear exactly what the necessary and sufficient set of
functionality they need to implement is, while at the same time removing
some dead code that tried to handle other types of SymbolContext fields
that were never going to be set anyway.
Differential Revision: https://reviews.llvm.org/D56462
llvm-svn: 350889
Typedefs are represented as S_UDT records in the globals stream. This
creates a strange situation where "types" are actually represented as
"symbols", so they need special handling.
In order to test this, we don't just use lldb and print out some
variables causing the AST to get created, because variables whose type
is a typedef will have debug info referencing the original type, not the
typedef. So we use lldb-test instead which will parse all debug info in
the entire file. This exposed some problems with lldb-test and the
native reader, mainly that certain types of obscure symbols which we can
find when iterating every single record would trigger crashes. These
have been fixed as well so that lldb-test can be used to test this
functionality.
Differential Revision: https://reviews.llvm.org/D56461
llvm-svn: 350888
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
This reverts commit r350802 because the test fails on windows. This
happens because we treat the paths as windows paths even though they
have linux path separators in the asm file. That results in wrong paths
being computed (\tmp\tmp\a.c instead of /tmp/a.c).
Reverting until I can figure out what to do with this.
llvm-svn: 350810
If a section name is exactly 8 bytes long (or has been truncated to 8
bytes), it will not contain the terminating nul character. This means
reading the name as a c string will pick up random data following the
name field (which happens to be the section vm size).
This fixes the name computation to avoid out-of-bounds access and adds a
test.
Reviewers: zturner, stella.stamenova
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56124
llvm-svn: 350809
Summary:
The concept of a base address was already present in the implementation
(it's needed for computing section load addresses properly), but it was
never exposed through this function. This fixes that.
llvm-svn: 350804
Summary:
The motivation for this is being able to write tests for the upcoming
breakpad line table parser, but this could be useful for testing the
low-level workings of any line table format. Or simply for viewing the
line table information with more detail (the brief format doesn't
include any of the flags for end_of_prologue and similar).
I've also removed the load_addresses argument from the
DumpCompileUnitLineTable function, as it wasn't being used anywhere.
Reviewers: clayborg, zturner
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56315
llvm-svn: 350802
was working on something else.
DynamicLoaderDarwinKernel::SearchForKernelNearPC should have had
an early return if the pc value is not in high memory; add that.
The search for a kernel at 0x2000 offsets was a stopgap; it doesn't
need to be checked any longer.
llvm-svn: 350786
Summary:
This adds unnamed pipe support in PipeWindows to support communication between a debug server and child process.
Modify PipeWindows::CreateNew to support the creation of an unnamed pipe.
Rename the previous method that created a named pipe to PipeWindows::CreateNewNamed.
Reviewers: zturner, llvm-commits
Reviewed By: zturner
Subscribers: Hui, labath, lldb-commits
Differential Revision: https://reviews.llvm.org/D56234
llvm-svn: 350784
ParseDeclsForContext was originally created to serve the very specific
case where the context is a function block. It was never intended to be
used for arbitrary DeclContexts, however due to the generic name, the
DWARF and PDB plugins implemented it in this way "just in case". Then,
lldb-test came along and decided to use it in that way.
Related to this, there are a set of functions in the SymbolFile class
interface whose requirements and expectations are not documented. For
example, if you call ParseCompileUnitFunctions, there's an inherent
requirement that you create entries in the underlying clang AST for
these functions as well as their signature types, because in order to
create an lldb_private::Function object, you have to pass it a
CompilerType for the parameter representing the signature.
On the other hand, there is no similar requirement (either inherent or
documented) if one were to call ParseDeclsForContext. Specifically, if
one calls ParseDeclsForContext, and some variable declarations, types,
and other things are added to the clang AST, is it necessary to create
lldb::Variable, lldb::Type, etc objects representing them? Nobody knows.
There is, however, an accidental requirement, because since all of the
plugins implemented this just in case, lldb-test came along and used
ParsedDeclsForContext, and then wrote check lines that depended on this.
When I went to try and implemented the NativePDB reader, I did not
adhere to this (in fact, from a layering perspective I went out of my
way to avoid it), and as a result the existing DIA PDB tests don't work
when the native PDB reader is enabled, because they expect that calling
ParseDeclsForContext will modify the *module's* view of symbols, and not
just the internal AST.
All of this confusion, however, can be avoided if we simply stick to
using ParseDeclsForContext for its original intended use case (blocks),
and use a different function (ParseAllDebugSymbols) for its intended use
case which is, unsuprisingly, to parse all the debug symbols (which is
all lldb-test really wanted to do anyway).
In the future, I would like to change ParseDeclsForContext to
ParseDeclsForFunctionBlock, then delete all of the dead code inside that
handles other types of DeclContexts (and probably even assert if the
DeclContext is anything other than a block).
A few PDB tests needed to be fixed up as a result of this, and this also
exposed a couple of bugs in the DIA PDB reader (doesn't matter much
since it should be going away soon, but worth mentioning) where the
appropriate AST entries weren't being created always.
Differential Revision: https://reviews.llvm.org/D56418
llvm-svn: 350764
Summary:
This is the result of the discussion in D55356, where it was suggested
as a solution to representing the addresses that logically belong to a
module in memory, but are not a part of any of its sections.
The ELF PT_LOAD segments are similar to the MachO "load commands",
except that the relationship between them and the object file sections
is a bit weaker. While in the MachO case, the sections belonging to a
specific segment are placed directly inside it in the object file
logical structur, in the ELF case, the sections and segments form two
separate hierarchies. This means that it is in theory possible to create
an elf file where only a part of a section would belong to some segment
(and another part to a different one). However, I am not aware of any
tool which would produce such a file (and most tools will have problems
ingesting them), so this means it is still possible to follow the MachO
model and make sections children of the PT_LOAD segments.
In case we run into (corrupt?) files with overlapping sections, I have
added code (and tests) which adjusts the sizes and/or drops the offending
sections in order to present a reasonable image to the upper layers of
LLDB. This is mostly done for completeness, as I don't anticipate
running into this situation in the real world. However, if we do run
into it, and the current behavior is not suitable for some reason, we
can implement this logic differently.
Reviewers: clayborg, jankratochvil, krytarowski, joerg, espindola
Subscribers: emaste, arichardson, lldb-commits
Differential Revision: https://reviews.llvm.org/D55998
llvm-svn: 350742
LLVM added wrappers to std::sort (r327219) that randomly shuffle the
container before sorting. The goal is to uncover non-determinism due to
undefined sorting order of objects having the same key.
This can be enabled with -DLLVM_ENABLE_EXPENSIVE_CHECKS=ON.
llvm-svn: 350679
Summary: The member is private and unused if HAVE_LIBCOMPRESSION is undefined, which triggers Clang's -Wunused-private-field warning.
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56458
llvm-svn: 350675
I was looking at the code in BreakpointList.cpp and found it deserved a
quick cleanup.
- Use std::vector instead of a std::list.
- Extract duplicate code for notifying.
- Remove code duplication when returning a const value.
- Use range-based for loop.
- Use early return in loops.
Differential revision: https://reviews.llvm.org/D56425
llvm-svn: 350659
Summary:
The target was being used in FinalizeFileActions to provide default
values for stdin/out/err. Also, most of the logic of this function was
very specific to how the lldb's Target class wants to launch processes,
so I, move it to Target::FinalizeFileActions, inverting the dependency.
The only piece of logic that was useful elsewhere (lldb-server) was the
part which sets up a pty and relevant file actions. I've kept this part
as ProcessLaunchInfo::SetUpPtyRedirection.
This makes ProcessLaunchInfo independent of any high-level lldb constructs.
Reviewers: zturner, jingham, teemperor
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56196
llvm-svn: 350617