Kill (rather than detach) form the inferior if debugserver loses its
connection to lldb to prevent zombie processes.
Differential revision: https://reviews.llvm.org/D92908
Use the newly added spawnattr API, posix_spawnattr_setarchpref_np, to
select a slice preferences per cpu and subcpu types, instead of just cpu
with posix_spawnattr_setarchpref_np.
rdar://16094957
Differential revision: https://reviews.llvm.org/D92712
Previously we used UINT16_MAX to mean no port/no specifc
port. This leads to confusion because 65535 is a valid
port number.
Instead use an optional. If you want a specific port call
LaunchGDBServer as normal, otherwise pass an empty optional
and it will be set to the port that gets chosen.
(or left empty in the case where we fail to find a port)
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92035
Previously if you did:
$ lldb-server platform --server <...> --min-gdbserver-port 12346
--max-gdbserver-port 12347
(meaning only use port 12346 for gdbservers)
Then tried to launch two gdbservers on the same connection,
the second one would return port 65535. Which is a real port
number but it actually means lldb-server didn't find one it was
allowed to use.
send packet: $qLaunchGDBServer;<...>
read packet: $pid:1919;port:12346;#c0
<...>
send packet: $qLaunchGDBServer;<...>
read packet: $pid:1927;port:65535;#c7
This situation should be an error even if port 65535 does happen
to be available on the current machine.
To fix this make PortMap it's own class within
GDBRemoteCommunicationServerPlatform.
This almost the same as the old typedef but for
GetNextAvailablePort() returning an llvm::Expected.
This means we have to handle not finding a port,
by returning an error packet.
Also add unit tests for this new PortMap class.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91634
Adds a command line option that makes debugserver propagate the SIGSEGV
signal to the target process.
Motivation: I'm one of the maintainers of Delve [1] a debugger for Go.
We use debugserver as our backend on macOS and one of the most often
reported bugs is that, on macOS, we don't propagate SIGSEGV back to the
target process [2]. Sometimes some programs will actually cause a
SIGSEGV, by design, and then handle it. Those programs can not be
debugged at all.
Since catching signals isn't very important for a Go debugger I'd much
rather have a command line option in debugserver that causes it to let
SIGSEGV go directly to the target process.
[1] https://github.com/go-delve/delve/
[2] https://github.com/go-delve/delve/issues/852
Differential revision: https://reviews.llvm.org/D89315
On x86_64, when you hit a __builtin_debugtrap instruction, you
can continue past this in the debugger. This patch has debugserver
recognize the specific instruction used for __builtin_debugtrap
and advance the pc past it, so that the user can continue execution
once they've hit one of these.
In the patch discussion, we were in agreement that it would be better
to have this knowledge up in lldb instead of depending on each
stub rewriting the pc behind the debugger's back, but that's a
larger scale change for another day.
<rdar://problem/65521634>
Differential revision: https://reviews.llvm.org/D91238
This fixes a reproducer test failure that was caused by the undefined
order in which global destructors run. More concretely, the static
instance of the RealFileSystem had been destroyed before we finalized
the reproducer, which uses it to copy files into the reproducer. By
exiting normally, we call SBDebugger::Terminate and finalize the
reproducer before any static dtors are run.
For performance reasons the reproducers don't copy the files captured by
the file collector eagerly, but wait until the reproducer needs to be
generated.
This is a problematic when LLDB crashes and we have to do all this
signal-unsafe work in the signal handler. This patch uses a similar
trick to clang, which has the driver invoke a new cc1 instance to do all
this work out-of-process.
This patch moves the writing of the mapping file as well as copying over
the reproducers into a separate process spawned when lldb crashes.
Differential revision: https://reviews.llvm.org/D89600
The existing help text was very terse and was missing several important
options. In the new version, I add a short description of each option
and a slightly longer description of the tool as a whole.
The new option list does not include undocumented no-op options:
--debug and --verbose. It also does not include undocumented short
aliases for long options, with two exceptions: -h, because it's
well-known; and -S (--setsid), as it's used in one test. Using these
options will now produce an error. I believe that is acceptable as users
aren't generally invoking lldb-server directly, and the only way to
learn about the short aliases was by looking at the source.
Differential Revision: https://reviews.llvm.org/D89477
the xcode project file for debugserver exists only to make my
life easier when I'm working only on debugserver and don't need
to build the rest of llvm/lldb. It had many build configurations
to reflect our old lldb xcode project file, which is long gone.
Removing them to simplify the configurations.
Specifically dropping CustomSwift-Debug, DebugClang, DebugPresubmission,
CustomSwift-Release, BuildAndIntegration. Keeping Debug & Release.
Link against CarouselServices on watchos, recognize the
WatchComplicationLaunch launch flag option when that framework
is available.
<rdar://problem/62473967>, <rdar://problem/61230088>
Add a new FreeBSD Process plugin using client/server model. This plugin
is based on the one used by NetBSD. It currently supports a subset
of functionality for amd64. It is automatically used when spawning
lldb-server. It can also be used by lldb client by setting
FREEBSD_REMOTE_PLUGIN environment variable (to any value).
The code is capable of debugging simple single-threaded programs. It
supports general purpose, debug and FPU registers (up to XMM) of amd64,
basic signalling, software breakpoints.
Adding the support for the plugin involves removing some dead code
from FreeBSDPlatform plugin (that was not ever used because
CanDebugProcess() returned false), and replacing it with appropriate
code from NetBSD platform support.
Differential Revision: https://reviews.llvm.org/D88796
Per the DAP spec for SetBreakpoints [1], the way to clear breakpoints is: `To clear all breakpoint for a source, specify an empty array.`
However, leaving the breakpoints field unset is also a well formed request (note the `breakpoints?:` in the `SetBreakpointsArguments` definition). If it's unset, we have a couple choices:
1. Crash (current behavior)
2. Clear breakpoints
3. Return an error response that the breakpoints field is missing.
I propose we do (2) instead of (1), and treat an unset breakpoints field the same as an empty breakpoints field.
[1] https://microsoft.github.io/debug-adapter-protocol/specification#Requests_SetBreakpoints
Reviewed By: wallace, labath
Differential Revision: https://reviews.llvm.org/D88513
When running in an ipv6-only environment where `AF_INET` sockets are not available, many lldb tests (mostly gdb remote tests) fail because things like `127.0.0.1` don't work there.
Use `localhost` instead of `127.0.0.1` whenever possible, or include a fallback of creating `AF_INET6` sockets when `AF_INET` fails.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87333
Extract a function for turning `eLaunchFlavorDefault` into a concreate `eLaunchFlavor` value.
This new function encapsulates the few compile time variables involved, and also prevents clang unused code diagnostics.
Differential Revision: https://reviews.llvm.org/D87327
If our process terminates due to an unhandled signal, we are supposed to get the
signal code via WTERMSIG. However, we instead try to get the exit status via
WEXITSTATUS which just ends up always calculating signal code 0 (at least on the
macOS implementation where it just shifts the signal code bits away and we're
left with only 0 bits).
The exit status calculation on the LLDB side also seems a bit off as it claims
an exit status that is just the signal code (instead of for example 128 + signal
code), but that will be another patch.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D86336
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
The Symbol Status in modules view is simplified so that only when the module has debug info and its size is non-zero, will the status message be displayed. The symbol status message is renamed to debug info size and flag message like "Symbols not found" and "Symbols loaded" is deleted.
Differential Revision: https://reviews.llvm.org/D86662
This patch changes the command interpreter sourcing logic for the REPL
init file. Instead of looking for a arbitrary file name, it standardizes
the REPL init file name to match to following scheme:
`.lldbinit-<language>-repl`
This will make the naming more homogenous and the sourcing logic future-proof.
rdar://65836048
Differential Revision: https://reviews.llvm.org/D86987
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
This patch removes the rather confusing LLDB_LIB_DIR and LLDB_IMPLIB_DIR
environment variables. They are confusing because LLDB_LIB_DIR would
point to the bin subdirectory in the build root while LLDB_IMPLIB_DIR
would point to the lib subdirectory. The reason far this was
LLDB.framework, which gets build under bin.
This patch replaces their uses with configuration.lldb_framework_path
and configuration.lldb_libs_dir respectively.
Differential revision: https://reviews.llvm.org/D86817
Always make lldb-argdumper a dependency of liblldb. Currently it is only
a dependency of the python swig target because of the relative symlink
in the python resource directory. That means that the dependency won't
be there when LLDB_ENABLE_PYTHON is disabled.
Differential revision: https://reviews.llvm.org/D86722
This patch adds the infrastructure to have language specific REPL init
files. It's the foundation work to a following patch that will introduce
Swift REPL init file.
When lldb is launched with the `--repl` option, it will look for a REPL
init file in the home directory and source it. This overrides the
default `~/.lldbinit`, which content might make the REPL behave
unexpectedly. If the REPL init file doesn't exists, lldb will fall back
to the default init file.
rdar://65836048
Differential Revision: https://reviews.llvm.org/D86242
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Only link against Python3_LIBRARY when LLDB_ENABLE_PYTHON is true. We
have to be more strict now becuase Python3_LIBRARY might be set to
NOTFOUND instead of being not set at all.
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
`lldb-server platform --socket-file /any/path` currently always fails to create
the socket file. This stopped working after D67424 which changed the
input variables of `writeFileAtomically` slightly. We're expected to
pass in a temporary path template (`/tmp/foo-%%%%%`) and the final
path we want to write. Instead we currently pass in the never set
`temp_file_path` as the temporary path (which will make this function always
fail) and pass in the temp_file_spec's path as the final path (which is actually
the template path such as `/tmp/foo-%%%%%`) instead of the actual path
we want to write (e.g. `/tmp/foo`).
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D85890
This patch configures LLDB.framework to build as a flat unversioned
framework on non-macOS Darwin targets, which have never supported the
macOS framework layout.
This patch also renames the 'IOS' cmake variable to 'APPLE_EMBEDDED' to
reflect the fact that lldb is built for several different kinds of embedded
Darwin targets, not just iOS.
Differential Revision: https://reviews.llvm.org/D85770
This patch is similar in spirit to https://reviews.llvm.org/D84480,
but does the maccatalyst/macosx disambiguation. I also took the
opportunity to factor out the gdb-remote packet log scanning used by
several testcases into lldbutil functions.
rdar://problem/66059257
Differential Revision: https://reviews.llvm.org/D84576
When lldb cannot find source file thus IDE renders a disassembly view, add syntax highlighting for constants, registers and final line comments for better debugging experience.
The original plain disassembly view looks like:
{F12401687}
An ideal view is like the screenshot attached.
{F12401515}
In this diff, the mimeType is a kind of media type for formatting the content in the response to a source request. Elements in the disassembly view, like constants, registers and final line comments are colored for highlighting.
A built-in support in the VSCode IDE for syntax highlighting will identify the which mimeType to apply and render the disassembly view as expected.
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D84555