This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
class type in constant evaluation.
This reinstates r360977, reverted in r360987, now that its rerequisite
patch is reinstated and fixed.
llvm-svn: 361067
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
This reinstates r360974, reverted in r360988, with a fix for a
static_assert failure on 32-bit builds: force Type base class to have
8-byte alignment like the rest of Clang's AST nodes.
llvm-svn: 360995
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
llvm-svn: 360974
evaluation.
This reinstates r360559, reverted in r360580, with a fix to avoid
crashing if evaluation-for-overflow mode encounters a virtual call on an
object of a class with a virtual base class, and to generally not try to
resolve virtual function calls to objects whose (notional) vptrs are not
readable. (The standard rules are unclear here, but this seems like a
reasonable approach.)
llvm-svn: 360635
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
* __VA_OPT__ is expanded if the *expanded* __VA_ARGS__ is non-empty,
not if the original argument contained no tokens.
* Placemarkers at the start and end of __VA_OPT__ are retained just
long enough to paste them with adjacent ## operators. We never paste
"across" a discarded placemarker.
llvm-svn: 359964
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
The change breaks libc++ with the follwing error:
In file included from valarray:4:
.../include/c++/v1/valarray:1062:60: error: explicit instantiation declaration of 'valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::valarray(size_t))
^
.../include/c++/v1/valarray:1063:60: error: explicit instantiation declaration of '~valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::~valarray())
llvm-svn: 359076
Moved UninitializedObjectChecker from the 'alpha.cplusplus' to the
'optin.cplusplus' package.
Differential Revision: https://reviews.llvm.org/D58573
llvm-svn: 358797
This fixes most references to the paths:
llvm.org/svn/
llvm.org/git/
llvm.org/viewvc/
github.com/llvm-mirror/
github.com/llvm-project/
reviews.llvm.org/diffusion/
to instead point to https://github.com/llvm/llvm-project.
This is *not* a trivial substitution, because additionally, all the
checkout instructions had to be migrated to instruct users on how to
use the monorepo layout, setting LLVM_ENABLE_PROJECTS instead of
checking out various projects into various subdirectories.
I've attempted to not change any scripts here, only documentation. The
scripts will have to be addressed separately.
Additionally, I've deleted one document which appeared to be outdated
and unneeded:
lldb/docs/building-with-debug-llvm.txt
Differential Revision: https://reviews.llvm.org/D57330
llvm-svn: 352514
Summary:
P1353R0, adopted in San Diego, specified an implementation feature test macro for destroying delete (P0722R3).
The implementation of the feature (https://reviews.llvm.org/rL315662) is not guarded behind a flag, so the macro is not conditional on language version.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55741
llvm-svn: 350934
template specialization if there is no matching non-template function.
This exposed a couple of related bugs:
- we would sometimes substitute into a friend template instead of a
suitable non-friend declaration; this would now crash because we'd
decide the specialization of the friend is a redeclaration of itself
- ADL failed to properly handle the case where an invisible local
extern declaration redeclares an invisible friend
Both are fixed herein: in particular, we now never make invisible
friends or local extern declarations visible to name lookup unless
they are the only declaration of the entity. (We already mostly did
this for local extern declarations.)
llvm-svn: 350505
This adds anchors to all of the documented checks so that you can directly link to a check by a stable name. This is useful because the SARIF file format has a field for specifying a URI to documentation for a rule and some viewers, like CodeSonar, make use of this information. These links are then exposed through the SARIF exporter.
llvm-svn: 349812
In Python3, dict.items, dict.keys, dict.values, zip, map and filter no longer return lists, they create generator instead.
The portability patch consists in forcing an extra `list` call if the result is actually used as a list.
`map` are replaced by list comprehension and `filter` by filtered list comprehension.
Differential Revision: https://reviews.llvm.org/D55197
llvm-svn: 349501
Implement support for try-catch blocks in constexpr functions, as
proposed in http://wg21.link/P1002 and voted in San Diego for c++20.
The idea is that we can still never throw inside constexpr, so the catch
block is never entered. A try-catch block like this:
try { f(); } catch (...) { }
is then morally equivalent to just
{ f(); }
Same idea should apply for function/constructor try blocks.
rdar://problem/45530773
Differential Revision: https://reviews.llvm.org/D55097
llvm-svn: 348789
This unfortunately results in a substantial breaking change when
switching to C++20, but it's not yet clear what / how much we should
do about that. We may want to add a compatibility conversion from
u8 string literals to const char*, similar to how C++98 provided a
compatibility conversion from string literals to non-const char*,
but that's not handled by this patch.
The feature can be disabled in C++20 mode with -fno-char8_t.
llvm-svn: 346892
As approved for the Working Paper in San Diego, support annotating
inline namespaces with 'inline'.
Change-Id: I51a654e11ffb475bf27cccb2458768151619e384
llvm-svn: 346677
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
Interestingly, this many year old (when I last looked I remember 2010ish)
checker was committed without any tests, so I thought I'd implement them, but I
was shocked to see how I barely managed to get it working. The code is severely
outdated, I'm not even sure it has ever been used, so I'd propose to move it
back into alpha, and possibly even remove it.
Differential Revision: https://reviews.llvm.org/D53856
llvm-svn: 345990
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
Summary:
This change rejects the shadowing of a capture by a parameter in lambdas in C++17.
```
int main() {
int a;
auto f = [a](int a) { return a; };
}
```
results in:
```
main.cpp:3:20: error: a lambda parameter cannot shadow an explicitly captured entity
auto f = [a](int a) { return a; };
^
main.cpp:3:13: note: variable a is explicitly captured here
auto f = [a](int a) { return a; };
^
```
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: lebedev.ri, erik.pilkington, cfe-commits
Differential Revision: https://reviews.llvm.org/D53595
llvm-svn: 345308
I added some missing doc. I have not developed any of these checkers, it might worth really inspecting whether I wrote something terribly incorrect.
Differential Revision: https://reviews.llvm.org/D52969
llvm-svn: 344878
Summary:
- Update the example VS project generation to use VS2017.
- Add docs for generating ninja build files, since they are popular.
- Remove reference to "make update" which no longer exists. Mention the
monorepo instead.
- Try to explain gnuwin32/coreutils requirements better.
- Use https:// links where possible
Reviewers: zturner, STL_MSFT
Subscribers: jfb, cfe-commits
Differential Revision: https://reviews.llvm.org/D52843
llvm-svn: 343809
Fix a one letter typo in diagnostics.html. (Wanted to try it with
arcanist).
Patch by king6cong
Differential Revision: https://reviews.llvm.org/D52511
llvm-svn: 343372
render the function deleted instead of rendering the program ill-formed.
This change also adds an enabled-by-default warning for the case where
an explicitly-defaulted special member function of a non-template class
is implicitly deleted by the type checking rules. (This fires either due
to this language change or due to pre-C++20 reasons for the member being
implicitly deleted). I've tested this on a large codebase and found only
bugs (where the program means something that's clearly different from
what the programmer intended), so this is enabled by default, but we
should revisit this if there are problems with this being enabled by
default.
llvm-svn: 343285
triggers instantiation of constexpr functions.
We mostly implemented this since Clang 6, but missed the template
instantiation case.
We do not implement the '&cast-expression' special case. It appears to
be a mistake / oversight. I've mailed CWG to see if we can remove it.
llvm-svn: 343064
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
This reinstates r337226, reverted in r337255, with a fix for the
InitializedEntity alignment problem that was breaking ARM buildbots.
llvm-svn: 337329
This change breaks on ARM because pointers to clang::InitializedEntity are only
4 byte aligned and do not have 3 bits to store values. A possible solution
would be to change the fields in clang::InitializedEntity to enforce a bigger
alignment requirement.
The error message is
llvm/include/llvm/ADT/PointerIntPair.h:132:3: error: static_assert failed "PointerIntPair with integer size too large for pointer"
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
include/llvm/ADT/PointerIntPair.h:73:13: note: in instantiation of template class 'llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> >' requested here
Value = Info::updateInt(Info::updatePointer(0, PtrVal),
llvm/include/llvm/ADT/PointerIntPair.h:51:5: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::setPointerAndInt' requested here
setPointerAndInt(PtrVal, IntVal);
^
llvm/tools/clang/lib/Sema/SemaInit.cpp:6237:12: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::PointerIntPair' requested here
return {Entity, LK_Extended};
Full log here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-global-isel/builds/1330http://lab.llvm.org:8011/builders/clang-cmake-armv7-full/builds/1394
llvm-svn: 337255
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
llvm-svn: 337226
This allows more qualification conversions, eg. conversion from
'int *(*)[]' -> 'const int *const (*)[]'
is now permitted, along with all the consequences of that: more types
are similar, more cases are permitted by const_cast, and conversely,
fewer "casting away constness" cases are permitted by reinterpret_cast.
llvm-svn: 336745
These functions are obsolete. The analyzer would advice to replace them with
memcmp(), memcpy() or memmove(), or memset().
Patch by Tom Rix!
Differential Revision: https://reviews.llvm.org/D41881
llvm-svn: 333326
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
layout" rules.
The new rules say that a standard-layout struct has its first non-static
data member and all base classes at offset 0, and consider a class to
not be standard-layout if that would result in multiple subobjects of a
single type having the same address.
We track "is C++11 standard-layout class" separately from "is
standard-layout class" so that the ABIs that need this information can
still use it.
Differential Revision: https://reviews.llvm.org/D45176
llvm-svn: 329332
Also rearrange how we list DR motions: rather than listing them as part of some
later standard, list them against the feature they are a DR against. Explicitly
add a description of how we handle DRs.
llvm-svn: 327769
More generally, this permits a template to be specialized in any scope in which
it could be defined, so this also supersedes DR44 and DR374 (the latter of
which we previously only implemented in C++11 mode onwards due to unclarity as
to whether it was a DR).
llvm-svn: 327705
Autoconf and some other systems tend to add essential compilation
options to CC (e.g. -std=gnu99). When running such an auto-generated
makefile, scan-build does not need to change CC and CXX as they are
already set to use ccc-analyzer by a configure script.
Implement a new option --keep-cc as was proposed in this discussion:
http://lists.llvm.org/pipermail/cfe-dev/2013-September/031832.html
Patch by Paul Fertser!
llvm-svn: 323665
While here, fix up the myriad other ways in which Sema's two "can this handler
catch that exception?" implementations get things wrong and unify them.
llvm-svn: 322431
This patch, by hamzasood, implements P0409R2, and allows [=, this] pre-C++2a as an extension (with appropriate warnings) for consistency.
https://reviews.llvm.org/D36572
Thanks Hamza!
llvm-svn: 311224
This change adds support for cross-file diagnostic paths in html output. If the
diagnostic path is not cross-file, there is no change in the output.
Patch by Vlad Tsyrklevich!
Differential Revision: https://reviews.llvm.org/D30406
llvm-svn: 309968
Some checks did not have documentation in the www/analyzer/ folder and also
some alpha checks became non-alpha.
Patch by Dominik Szabó!
Differential Revision: https://reviews.llvm.org/D33645
llvm-svn: 308242
Summary:
3.4.6 [basic.lookup.udir] paragraph 1:
In a using-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in a nested-name-specifier, only namespace names are considered.
Reviewers: rsmith, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30848
llvm-svn: 298126
Under this defect resolution, the injected-class-name of a class or class
template cannot be used except in very limited circumstances (when declaring a
constructor, in a nested-name-specifier, in a base-specifier, or in an
elaborated-type-specifier). This is apparently done to make parsing easier, but
it's a pain for us since we don't know whether a template-id using the
injected-class-name is valid at the point when we annotate it (we don't yet
know whether the template-id will become part of an elaborated-type-specifier).
As a tentative resolution to a perceived language defect, mem-initializer-ids
are added to the list of exceptions here (they generally follow the same rules
as base-specifiers).
When the reference to the injected-class-name uses the 'typename' or 'template'
keywords, we permit it to be used to name a type or template as an extension;
other compilers also accept some cases in this area. There are also a couple of
corner cases with dependent template names that we do not yet diagnose, but
which will also get this treatment.
llvm-svn: 292518
This rule permits the injected-class-name of a class template to be used as
both a template type argument and a template template argument, with no extra
syntax required to disambiguate.
llvm-svn: 292426
Diasllow a declaration using the 'auto' type specifier from using two different
meanings of it at once, or from declaring multiple functions with deduced
return types or introducing multiple trailing return types.
The standard does not technically disallow the multiple trailing return types
case if all the declarators declare variables (such as function pointers with
trailing return types), but we disallow that too, following the clear intent.
llvm-svn: 291880
* Update version number in DR tests from 4.0 to 4
* Teach make_cxx_dr_status script about version numbers that don't contain a
period.
* Update cxx_status.html and cxx_dr_status.html to list Clang 4 features as
"Clang 4" rather than "SVN"
Clang 4 features are still listed in yellow rather than green until release.
llvm-svn: 291871
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811 and r291412, with a couple of
fixes for handling of explicitly-specified non-trailing template argument
packs.
llvm-svn: 291427
This issue clarifies how deduction proceeds past a non-trailing function
parameter pack. Essentially, the pack itself is skipped and consumes no
arguments (except for those implied by an explicitly-specified template
arguments), and nothing is deduced from it. As a small fix to the standard's
rule, we do not allow subsequent deduction to change the length of the function
parameter pack (by preventing extension of the explicitly-specified pack if
present, and otherwise deducing all contained packs to empty packs).
llvm-svn: 291425
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811, with a fix for handling of
explicitly-specified template argument packs.
llvm-svn: 291410
This reverts commit r290808, as it broken all ARM and AArch64 test-suite
test: MultiSource/UnitTests/C++11/frame_layout
Also, please, next time, try to write a commit message in according to
our guidelines:
http://llvm.org/docs/DeveloperPolicy.html#commit-messages
llvm-svn: 290811
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside
the immediate context is much more common during substitution than during
implicit conversion sequence formation.
This does not implement the partial ordering portion of DR1391, which so
far appears to be misguided.
llvm-svn: 290808
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792
to make reference to template parameters. This is only a partial
implementation; we retain the restriction that the argument must not be
type-dependent, since it's unclear how that would work given the existence of
other language rules requiring an exact type match in this context, even for
type-dependent cases (a question has been raised on the core reflector).
llvm-svn: 290647
specialized than the primary template. (Put another way, if we imagine there
were a partial specialization matching the primary template, we should never
select it if some other partial specialization also matches.)
llvm-svn: 290593
We continue to support dynamic exception specifications in C++1z as an
extension, but produce an error-by-default warning when we encounter one. This
allows users to opt back into the feature with a warning flag, and implicitly
opts system headers back into the feature should they happen to use it.
There is one semantic change implied by P0003R5 but not implemented here:
violating a throw() exception specification should now call std::terminate
directly instead of calling std::unexpected(), but since P0003R5 also removes
std::unexpected() and std::set_unexpected, and the default unexpected handler
calls std::terminate(), a conforming C++1z program cannot tell that we are
still calling it. The upside of this strategy is perfect backwards
compatibility; the downside is that we don't get the more efficient 'noexcept'
codegen for 'throw()'.
llvm-svn: 289019
When an object of class type is initialized from a prvalue of the same type
(ignoring cv qualifications), use the prvalue to initialize the object directly
instead of inserting a redundant elidable call to a copy constructor.
llvm-svn: 288866
latter case, a temporary array object is materialized, and can be
lifetime-extended by binding a reference to the member access. Likewise, in an
array-to-pointer decay, an rvalue array is materialized before being converted
into a pointer.
This caused IR generation to stop treating file-scope array compound literals
as having static storage duration in some cases in C++; that has been rectified
by modeling such a compound literal as an lvalue. This also improves clang's
compatibility with GCC for those cases.
llvm-svn: 288654
on cxx-abi-dev (thread starting 2016-10-11). This is currently hidden behind a
cc1-only -m flag, pending discussion of how best to deal with language changes
that require use of new symbols from the ABI library.
llvm-svn: 285664
mismatched dynamic exception specifications in expressions from an error to a
warning, since this is no longer ill-formed in C++1z.
Allow reference binding of a reference-to-non-noexcept function to a noexcept
function lvalue. As defect resolutions, also allow a conditional between
noexcept and non-noexcept function lvalues to produce a non-noexcept function
lvalue (rather than decaying to a function pointer), and allow function
template argument deduction to deduce a reference to non-noexcept function when
binding to a noexcept function type.
llvm-svn: 284905
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
This is a re-commit of r284800.
llvm-svn: 284890
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
llvm-svn: 284800
not instantiate exception specifications of functions if they were only used in
unevaluated contexts (other than 'noexcept' expressions).
In C++17 onwards, this becomes essential since the exception specification is
now part of the function's type.
Note that this means that constructs like the following no longer work:
struct A {
static T f() noexcept(...);
decltype(f()) *p;
};
... because the decltype expression now needs the exception specification of
'f', which has not yet been parsed.
llvm-svn: 284549
Summary:
Move alpha.valist from potential to alpha since it was implemented in D15227
Cleanup some HTML comments, add a missing link
Reviewers: jordan_rose, zaks.anna
Subscribers: cfe-commits, xazax.hun
Differential Revision: https://reviews.llvm.org/D25663
llvm-svn: 284445
Instead of ignoring the evaluation order rule, ignore the "destroy parameters
in reverse construction order" rule for the small number of problematic cases.
This only causes incorrect behavior in the rare case where both parameters to
an overloaded operator <<, >>, ->*, &&, ||, or comma are of class type with
non-trivial destructor, and the program is depending on those parameters being
destroyed in reverse construction order.
We could do a little better here by reversing the order of parameter
destruction for those functions (and reversing the argument evaluation order
for all direct calls, not just those with operator syntax), but that is not a
complete solution to the problem, as the same situation can be reached by an
indirect function call.
Approach reviewed off-line by rnk.
llvm-svn: 282777
function correctly when targeting MS ABIs (this appears to have never mattered
prior to this change).
Update test case to always cover both 32-bit and 64-bit Windows ABIs, since
they behave somewhat differently from each other here.
Update test case to also cover operators , && and ||, which it appears are also
affected by P0145R3 (they're not explicitly called out by the design document,
but this is the emergent behavior of the existing wording).
Original commit message:
P0145R3 (C++17 evaluation order tweaks): evaluate the right-hand side of
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282619
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282556
explicit specialization to a warning for C++98 mode (this is a defect report
resolution, so per our informal policy it should apply in C++98), and turn
the warning on by default for C++11 and later. In all cases where it fires, the
right thing to do is to remove the pointless explicit instantiation.
llvm-svn: 280308
Fix the explanation of how to run tests after migration
from autotools to cmake.
Significantly expand the "debugging" section
with more interesting stuff.
Update the table of contents accordingly.
Fix paragraphs in the overview section.
Differential Revision: https://reviews.llvm.org/D22874
llvm-svn: 277029
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
compiler-rt is optional. We often get email from users with compiler-rt
build errors who don't actually need compiler-rt. Marking it optional
should help them avoid those potential problems.
While I'm here, update a reference to the build directory and remove an
obsolete reference to llvm-gcc. Nobody today is under the impression
that Clang depends on GCC.
llvm-svn: 265963
This is the clang equivalent to llvm commit 264601. When using Visual Studio 2015, cmake now puts the native visualizers in llvm.sln, so the developer automatically sees custom visualizations.
Much thanks to ariccio who provided extensive help on this change. (manual installation still needed on VS2013).
llvm-svn: 264603
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
exactly the same as clang's existing [[clang::fallthrough]] attribute, which
has been updated to have the same semantics. The one significant difference
is that [[fallthrough]] is ill-formed if it's not used immediately before a
switch label (even when -Wimplicit-fallthrough is disabled). To support that,
we now build a CFG of any function that uses a '[[fallthrough]];' statement
to check.
In passing, fix some bugs with our support for statement attributes -- in
particular, diagnose their use on declarations, rather than asserting.
llvm-svn: 262881