Provide separate visitor templates for the three hierarchies, and also
the `FullSValVisitor' class, which is a union of all three visitors.
Additionally, add a particular example visitor, `SValExplainer', in order to
test the visitor templates. This visitor is capable of explaining the SVal,
SymExpr, or MemRegion in a natural language.
Compared to the reverted r257605, this fixes the test that used to fail
on some triples, and fixes build failure under -fmodules.
Differential Revision: http://reviews.llvm.org/D15448
llvm-svn: 257893
This reverts commit r257605.
The test fails on architectures that use unsigned int as size_t.
SymbolManager.h fails with compile errors on some platforms.
llvm-svn: 257608
Provide separate visitor templates for the three hierarchies, and also
the `FullSValVisitor' class, which is a union of all three visitors.
Additionally, add a particular example visitor, `SValExplainer', in order to
test the visitor templates. This visitor is capable of explaining the SVal,
SymExpr, or MemRegion in a natural language.
Differential Revision: http://reviews.llvm.org/D15448
llvm-svn: 257605
SymbolReaper was destroying the symbol too early when it was referenced only
from an index SVal of a live ElementRegion.
In order to test certain aspects of this patch, extend the debug.ExprInspection
checker to allow testing SymbolReaper in a direct manner.
Differential Revision: http://reviews.llvm.org/D12726
llvm-svn: 255236
The analyzer trims unnecessary nodes from the exploded graph before reporting
path diagnostics. However, in some cases it can trim all nodes (including the
error node), leading to an assertion failure (see
https://llvm.org/bugs/show_bug.cgi?id=24184).
This commit addresses the issue by adding two new APIs to CheckerContext to
explicitly create error nodes. Unless the client provides a custom tag, these
APIs tag the node with the checker's tag -- preventing it from being trimmed.
The generateErrorNode() method creates a sink error node, while
generateNonFatalErrorNode() creates an error node for a path that should
continue being explored.
The intent is that one of these two methods should be used whenever a checker
creates an error node.
This commit updates the checkers to use these APIs. These APIs
(unlike addTransition() and generateSink()) do not take an explicit Pred node.
This is because there are not any error nodes in the checkers that were created
with an explicit different than the default (the CheckerContext's Pred node).
It also changes generateSink() to require state and pred nodes (previously
these were optional) to reduce confusion.
Additionally, there were several cases where checkers did check whether a
generated node could be null; we now explicitly check for null in these places.
This commit also includes a test case written by Ying Yi as part of
http://reviews.llvm.org/D12163 (that patch originally addressed this issue but
was reverted because it introduced false positive regressions).
Differential Revision: http://reviews.llvm.org/D12780
llvm-svn: 247859
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Summary:
In clang-tidy we'd like to know the name of the checker producing each
diagnostic message. PathDiagnostic has BugType and Category fields, which are
both arbitrary human-readable strings, but we need to know the exact name of the
checker in the form that can be used in the CheckersControlList option to
enable/disable the specific checker.
This patch adds the CheckName field to the CheckerBase class, and sets it in
the CheckerManager::registerChecker() method, which gets them from the
CheckerRegistry.
Checkers that implement multiple checks have to store the names of each check
in the respective registerXXXChecker method.
Reviewers: jordan_rose, krememek
Reviewed By: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2557
llvm-svn: 201186
This will emit a warning if a call to clang_analyzer_warnIfReached is
executed, printing REACHABLE. This is a more explicit way to declare
expected reachability than using clang_analyzer_eval or triggering
a bug (divide-by-zero or null dereference), and unlike the former will
work the same in inlined functions and top-level functions. Like the
other debug helpers, it is part of the debug.ExprInspection checker.
Patch by Jared Grubb!
llvm-svn: 191909
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
This check is also accessible through the debug.ExprInspection checker.
Like clang_analyzer_eval, you can use it to test the analyzer engine's
current state; the argument should be true or false to indicate whether or
not you expect the function to be inlined.
When used in the positive case (clang_analyzer_checkInlined(true)), the
analyzer prints the message "TRUE" if the function is ever inlined. However,
clang_analyzer_checkInlined(false) should never print a message; this asserts
that there should be no paths on which the current function is inlined, but
then there are no paths on which to print a message! (If the assertion is
violated, the message "FALSE" will be printed.)
This asymmetry comes from the fact that the only other chance to print a
message is when the function is analyzed as a top-level function. However,
when we do that, we can't be sure it isn't also inlined elsewhere (such as
in a recursive function, or if we want to analyze in both general or
specialized cases). Rather than have all checkInlined calls have an appended,
meaningless "FALSE" or "TOP-LEVEL" case, there is just no message printed.
void clang_analyzer_checkInlined(int);
For debugging purposes only!
llvm-svn: 161708
The new debug.ExprInspection checker looks for calls to clang_analyzer_eval,
and emits a warning of TRUE, FALSE, or UNKNOWN (or UNDEFINED) based on the
constrained value of its (boolean) argument. It does not modify the analysis
state though the conditions tested can result in branches (e.g. through the
use of short-circuit operators).
llvm-svn: 156919