This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
MSVC emits an error when one uses a const variable in a lambda without
capturing it.
gcc and clang don't emit an error in this scenario.
llvm-svn: 280707
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
easier to scan a set of options with a relatively large number of positional
arguments. This commit standardizes their formatting throughout LLDB and
applies surrounding directives to exempt them from being formatted by
clang-format.
These kinds of exemptions should be rare cases that benefit significantly
from alternative formatting. They also imply a long-term obligation to
maintain their format since the automated tools will not do so.
llvm-svn: 279882
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
For code like:
int g_global = 234;
int g_static = 345;
int main(int argc, char **argv)
{
int a = 22333;
static int g_int = 123;
return g_global + g_static + g_int + a;
}
If we stop at the "return" statement, we expect to see "argc", "argv", "a" and "g_int" when we type "frame variable" since "g_int" is a locally defined static variable, but we don't expect to see "g_global" or "g_static" unless we add the -g option to "frame variable".
llvm-svn: 272348
Summary:
This removes all uses of virtual on functions
where override could be used, including on destructors.
It also adds override where virtual was previously
missing.
Reviewers: clayborg, labath
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13503
llvm-svn: 249564
This is meant to support languages that have a scripting mode with top-level code that acts as global
For now, this flag only controls whether 'frame variable' will attempt to treat globals as locals when within such a function
llvm-svn: 248960
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
This works for Python commands defined via a class (implement get_flags on your class) and C++ plugin commands (which can call SBCommand::GetFlags()/SetFlags())
Flags allow features such as not letting the command run if there's no target, or if the process is not stopped, ...
Commands could always check for these things themselves, but having these accessible via flags makes custom commands more consistent with built-in ones
llvm-svn: 238286
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
The refactor was motivated by some comments that Greg made
http://reviews.llvm.org/D6918
and also to break a dependency cascade that caused functions linking
in string->int conversion functions to pull in most of lldb
llvm-svn: 226199
This reverses out the options validators changes. We'll get these
back in once the changes to the output can be resolved.
Restores broken tests on FreeBSD, Linux, MacOSX.
Changes reverted: r212500, r212317, r212290.
llvm-svn: 212543
The purpose of the OptionValidator is to determine, based on some
arbitrary set of conditions, whether or not a command option is
valid for a given debugger state. An example of this might be
to selectively disable or enable certain command options that
don't apply to a particular platform.
This patch contains no functional change, and does not actually
make use of an OptionValidator for any purpose yet. A follow-up
patch will begin to add the logic and users of OptionValidator.
Reviewed by: Greg Clayton, Jim Ingham
Differential Revision: http://reviews.llvm.org/D4369
llvm-svn: 212290
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
ValueObjects themselves use DumpValueObjectOptions as the currency for the same purpose
The code to convert between these two units was replicated (to varying degrees of correctness) in several spots in the code
This checkin provides one and only one (and hopefully correct :-) entry point for this conversion
llvm-svn: 178044
(lldb) frame variable
without first launching the inferior, you get:
error: invalid frame
this is misleading and should probably hint that there is no process. Adding this flag makes sure that we get:
error: invalid process
The difference between eFlagRequiresProcess and eFlagProcessMustBeLaunched is an open question.
llvm-svn: 175702
Make the message when you hit an crash while evaluating an expression a little clearer, and mention "thread return -x".
rdar://problem/13110464
llvm-svn: 174095
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
enum
{
//----------------------------------------------------------------------
// eFlagRequiresTarget
//
// Ensures a valid target is contained in m_exe_ctx prior to executing
// the command. If a target doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidTargetDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidTargetDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresTarget = (1u << 0),
//----------------------------------------------------------------------
// eFlagRequiresProcess
//
// Ensures a valid process is contained in m_exe_ctx prior to executing
// the command. If a process doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidProcessDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidProcessDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresProcess = (1u << 1),
//----------------------------------------------------------------------
// eFlagRequiresThread
//
// Ensures a valid thread is contained in m_exe_ctx prior to executing
// the command. If a thread doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidThreadDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidThreadDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresThread = (1u << 2),
//----------------------------------------------------------------------
// eFlagRequiresFrame
//
// Ensures a valid frame is contained in m_exe_ctx prior to executing
// the command. If a frame doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidFrameDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidFrameDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresFrame = (1u << 3),
//----------------------------------------------------------------------
// eFlagRequiresRegContext
//
// Ensures a valid register context (from the selected frame if there
// is a frame in m_exe_ctx, or from the selected thread from m_exe_ctx)
// is availble from m_exe_ctx prior to executing the command. If a
// target doesn't exist or is invalid, the command will fail and
// CommandObject::GetInvalidRegContextDescription() will be returned as
// the error. CommandObject subclasses can override the virtual function
// for GetInvalidRegContextDescription() to provide custom strings when
// needed.
//----------------------------------------------------------------------
eFlagRequiresRegContext = (1u << 4),
//----------------------------------------------------------------------
// eFlagTryTargetAPILock
//
// Attempts to acquire the target lock if a target is selected in the
// command interpreter. If the command object fails to acquire the API
// lock, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagTryTargetAPILock = (1u << 5),
//----------------------------------------------------------------------
// eFlagProcessMustBeLaunched
//
// Verifies that there is a launched process in m_exe_ctx, if there
// isn't, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagProcessMustBeLaunched = (1u << 6),
//----------------------------------------------------------------------
// eFlagProcessMustBePaused
//
// Verifies that there is a paused process in m_exe_ctx, if there
// isn't, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagProcessMustBePaused = (1u << 7)
};
Now each command object contains a "ExecutionContext m_exe_ctx;" member variable that gets initialized prior to running the command. The validity of the target objects in m_exe_ctx are checked to ensure that any target/process/thread/frame/reg context that are required are valid prior to executing the command. Each command object also contains a Mutex::Locker m_api_locker which gets used if eFlagTryTargetAPILock is set. This centralizes a lot of checking code that was previously and inconsistently implemented across many commands.
llvm-svn: 171990
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
Execute which was never going to get run and another ExecuteRawCommandString. Took the knowledge of how
to prepare raw & parsed commands out of CommandInterpreter and put it in CommandObject where it belongs.
Also took all the cases where there were the subcommands of Multiword commands declared in the .h file for
the overall command and moved them into the .cpp file.
Made the CommandObject flags work for raw as well as parsed commands.
Made "expr" use the flags so that it requires you to be paused to run "expr".
llvm-svn: 158235
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871