This merges the 32-bit and 64-bit mode code to just use Custom
for both i32 and i64. We already had most of the handling in
the custom handling due to the AVX512 having legal fp_to_uint.
Just needed to add the i32->i64 promotion handling. Refactor
the fp_to_uint code in the custom handler to simplify the
number of times we check things.
Tweak cost model tables to match the default handling we were
getting due to Expand before.
llvm-svn: 370700
Use Custom lowering instead. Fall back to default expansion only
when the scalar FP type belongs in an XMM register. This improves
lowering for i32 to fp80, and also i32 to double on SSE1 only.
llvm-svn: 370699
FP128 values are passed in xmm registers so should be asssociated
with an SSE feature rather than MMX which uses a different set
of registers.
llc enables sse1 and sse2 by default with x86_64. But does not
enable mmx. Clang enables all 3 features by default.
I've tried to add command lines to test with -sse
where possible, but any test that returns a value in an xmm
register fails with a fatal error with -sse since we have no
defined ABI for that scenario.
llvm-svn: 370682
We should be using MQPR, and if we don't we can get COPYs and PHIs created for
QPR. These get folded into instructions, failing verification checks.
Differential revision: https://reviews.llvm.org/D66214
llvm-svn: 370676
Now that constrained fpto[su]i intrinsic are available,
add codegen support to the SystemZ backend.
In addition to pure back-end changes, I've also needed
to add the strict_fp_to_[su]int and any_fp_to_[su]int
pattern fragments in the obvious way.
llvm-svn: 370674
Summary:
Adds the following inline asm constraints for SVE:
- w: SVE vector register with full range, Z0 to Z31
- x: Restricted to registers Z0 to Z15 inclusive.
- y: Restricted to registers Z0 to Z7 inclusive.
This change also adds the "z" modifier to interpret a register as an SVE register.
Not all of the bitconvert patterns added by this patch are used, but they have been included here for completeness.
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, rengolin, cameron.mcinally, greened
Reviewed By: sdesmalen
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66302
llvm-svn: 370673
Fix: add a 'consumeError()' call to ObjectFile.cpp.
This error was never checked.
Original commit message:
It adds a test case for a problem fixed by D66976 <https://reviews.llvm.org/D66976>.
It was introduced by me in D66089 <https://reviews.llvm.org/D66089>.
The error reported was never consumed because of a wrong variable name used,
so it could fail when LLVM_ENABLE_ABI_BREAKING_CHECKS is used.
Differential revision: https://reviews.llvm.org/D67002
llvm-svn: 370669
The motivating bugs are:
https://bugs.llvm.org/show_bug.cgi?id=41340https://bugs.llvm.org/show_bug.cgi?id=42697
As discussed there, we could view this as a failure of IR canonicalization,
but then we would need to implement a backend fixup with target overrides
to get this right in all cases. Instead, we can just view this as a codegen
opportunity. It's not even clear for x86 exactly when we should favor
test+set; some CPUs have better theoretical throughput for the ALU ops than
bt/test.
This patch is made more complicated than I expected because there's an early
DAGCombine for 'and' that can change types of the intermediate ops via
trunc+anyext.
Differential Revision: https://reviews.llvm.org/D66687
llvm-svn: 370668
Summary:
D61491 caused us to use relocs when they're not strictly necessary, to
refer to symbols in the text section. This is a pessimization and it's a
problem for some loaders that don't support relocs yet.
Reviewers: nhaehnle, arsenm, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65813
llvm-svn: 370667
Summary:
Commit r366897 introduced the possibility to set a variable from an
expression, such as [[#VAR2:VAR1+3]]. While introducing this feature, it
introduced extra logic to allow using such a variable on the same line
later on. Unfortunately that extra logic is flawed as it relies on a
mapping from variable to expression defining it when the mapping is from
variable definition to expression. This flaw causes among other issues
PR42896.
This commit avoids the problem by forbidding all use of a variable
defined on the same line, and removes the now useless logic. Redesign
will be done in a later commit because it will require some amount of
refactoring first for the solution to be clean. One example is the need
for some sort of transaction mechanism to set a variable temporarily and
from an expression and rollback if the CHECK pattern does not match so
that diagnostics show the right variable values.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66141
llvm-svn: 370663
bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) to i{N*8} --> bswap (bitcast X to i{N*8})
In PR43146:
https://bugs.llvm.org/show_bug.cgi?id=43146
...we have a more complicated case where SLP is making a mess of bswap. This patch won't
do anything for that currently, but we need to improve bswap recognition in instcombine,
SLP, and/or a standalone pass to avoid that problem.
This is limited using the data-layout so we don't try to do this transform with actual
vector types. The backend does not appear to have folds to convert in either direction,
so we don't want to mess up something that is actually better lowered as a shuffle.
On x86, we're trading something like this:
vmovd %edi, %xmm0
vpshufb LCPI0_0(%rip), %xmm0, %xmm0 ## xmm0 = xmm0[3,2,1,0,u,u,u,u,u,u,u,u,u,u,u,u]
vmovd %xmm0, %eax
For:
movl %edi, %eax
bswapl %eax
Differential Revision: https://reviews.llvm.org/D66965
llvm-svn: 370659
I don't see GNU dlltool supporting doing this; with only a -d option
and no -l option, GNU dlltool runs successfully but doesn't write any
output file.
Differential Revision: https://reviews.llvm.org/D65645
llvm-svn: 370655
On BtVer2 conditional SIMD stores are heavily microcoded.
The latency is directly proportional to the number of packed elements extracted
from the input vector. Also, according to micro-benchmarks, most of the
computation seems to be done in the integer unit.
Only a minority of the uOPs is executed by the FPU. The observed behaviour on
the FPU looks similar to this:
- The input MASK value is moved to the Integer Unit
-- [ a VMOVMSK-like uOP-executed on JFPU0].
- In parallel, each element of the input XMM/YMM is extracted and then sent to
the IntegerUnit through JFPU1.
As expected, a (conditional) store is executed for every extracted element.
Interestingly, a (speculative) load is executed for every extracted element too.
It is as-if a "LOAD - BIT_EXTRACT- CMOV" sequence of uOPs is repeated by the
integer unit for every contionally stored element.
VMASKMOVDQU is a special case: the number of speculative loads is always 2
(presumably, one load per quadword). That means, extra shifts and masking is
performed on (one of) the loaded quadwords before each conditional store (that
also explains the big number of non-FP uOPs retired).
This patch replaces the existing writes for conditional SIMD stores (i.e.
WriteFMaskedStore, and WriteFMaskedStoreY) with the following new writes:
WriteFMaskedStore32 [ XMM Packed Single ]
WriteFMaskedStore32Y [ YMM Packed Single ]
WriteFMaskedStore64 [ XMM Packed Double ]
WriteFMaskedStore64Y [ YMM Packed Double ]
Added a wrapper class named X86SchedWriteMaskMove in X86Schedule.td to describe
both RM and MR variants for conditional SIMD moves in a single tablegen
definition.
Instances of that class are then passed in input to multiclass avx_movmask_rm
when constructing MASKMOVPS/PD definitions.
Since this patch introduces new writes, I had to update all the X86 scheduling
models.
Differential Revision: https://reviews.llvm.org/D66801
llvm-svn: 370649
The missing line added by this patch ensures that only spilt variable
locations are candidates for being restored from the stack. Otherwise,
register or constant-value information can be interpreted as a spill
location, through a union.
The added regression test replicates a scenario where this occurs: the
stack load from [rsp] causes the register-location DBG_VALUE to be
"restored" to rsi, when it should be left alone. See PR43058 for details.
Un x-fail a test that was suffering from this from a previous patch.
Differential Revision: https://reviews.llvm.org/D66895
llvm-svn: 370648
This is in line with the previous changes which allowed to
override the sh_offset/sh_size and useful for writing test cases.
Differential revision: https://reviews.llvm.org/D66998
llvm-svn: 370633
Verify that the call site DWARF symbols (added during the implementation
of the debug entry values feature) are generated properly.
Differential Revision: https://reviews.llvm.org/D66865
llvm-svn: 370631
MachineLICM can hoist an invariant load, but if that load is folded it needs to be unfolded. On AVX512 sometimes this load is an broadcast load which we were previously unable to unfold. This patch adds initial support for that with a very basic list of supported instructions as a starting point.
Differential Revision: https://reviews.llvm.org/D67017
llvm-svn: 370620
The motivating case for this is a long way from here:
https://bugs.llvm.org/show_bug.cgi?id=43146
...but I think this is where we have to start.
We need to canonicalize/optimize sequences of shift and logic to ease
pattern matching for things like bswap and improve perf in general.
But without the artificial limit of '!LegalTypes' (early combining),
there are a lot of test diffs, and not all are good.
In the minimal tests added for this proposal, x86 should have better
throughput in all cases. AArch64 is neutral for scalar tests because
it can fold shifts into bitwise logic ops.
There are 3 shift opcodes and 3 logic opcodes for a total of 9 possible patterns:
https://rise4fun.com/Alive/VlIhttps://rise4fun.com/Alive/n1mhttps://rise4fun.com/Alive/1Vn
Differential Revision: https://reviews.llvm.org/D67021
llvm-svn: 370617
Rename to lowerShuffleAsLanePermuteAndShuffle to make it clear that not just blends are performed.
Cleanup the in-lane shuffle mask generation to make it more obvious what's going on.
Some prep work noticed while investigating the poor shuffle code mentioned in D66004.
llvm-svn: 370613
These were never enabled correctly and are causing other problems. Taking them
out for the moment, whilst we work on the issues.
This reverts r370329.
llvm-svn: 370607
Summary:
This fixes the bugzilla id 43183 which triggerd by the following commit:
[RISCV] Avoid generating AssertZext for LP64 ABI when lowering floating LibCall
llvm-svn: 370604
This is what the copies will eventually be turned into. We don't
use COPY_TO_REGCLASS for scalar_to_vector patterns. So we should
use the real instruction here too.
llvm-svn: 370601
Summary:
Back-end currently expands mempcpy, but middle-end should work with memcpy instead of mempcpy to enable more memcpy-optimization.
GCC backend emits mempcpy, so LLVM backend could form it too, if we know mempcpy libcall is better than memcpy + n.
https://godbolt.org/z/dOCG96
Reviewers: efriedma, spatel, craig.topper, RKSimon, jdoerfert
Reviewed By: efriedma
Subscribers: hjl.tools, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65737
llvm-svn: 370593
EltsFromConsecutiveLoads was assuming that the number of input elts was the same as the number of elements in the output vector type when creating a zeroing shuffle, causing an assert when subvectors were being combined instead of just scalars.
llvm-svn: 370592
Narrowing stores when the target doesn't support the narrow version
forces the target to expand into a load-modify-store sequence, which
is highly suboptimal. The information narrowing throws away (legality
of the inverse transform) is hard to re-analyze. If the target doesn't
support a store of the narrow type, don't narrow even in pre-legalize
mode.
No test as this is DAGCombiner and depends on target bits.
llvm-svn: 370576
Use a { iN undef, i1 false } struct as the base, and only insert
the first operand, instead of using { iN undef, i1 undef } as the
base and inserting both. This is the same as what we do in InstCombine.
Differential Revision: https://reviews.llvm.org/D67034
llvm-svn: 370573
Restructured the code a little bit in preparation for adding
UMULFIXSAT. I think it will be easier to understand the code
if not interleaving the codegen for signed/unsigned/saturated
cases that much.
llvm-svn: 370569
1. zlib::compress accept &size_t but the param is an uint64_t.
2. Some systems don't have zlib installed. Don't use compression by default.
llvm-svn: 370564
cold versus function being newly added.
This is the second half of https://reviews.llvm.org/D66374.
Profile symbol list is the collection of function symbols showing up in
the binary which generates the current profile. It is used to discriminate
function being cold versus function being newly added. Profile symbol list
is only added for profile with ExtBinary format.
During profile use compilation, when profile-sample-accurate is enabled,
a function without profile will be regarded as cold only when it is
contained in that list.
Differential Revision: https://reviews.llvm.org/D66766
llvm-svn: 370563
Summary:
Adds clang builtins and LLVM intrinsics for these experimental
instructions. They are not implemented in engines yet, but that is ok
because the user must opt into using them by calling the builtins.
Reviewers: aheejin, dschuff
Reviewed By: aheejin
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67020
llvm-svn: 370556
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.
Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.
To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.
So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.
Differential Revision: https://reviews.llvm.org/D67013
llvm-svn: 370547
Also improve assembler parser register validation for .seh_ directives.
This requires moving X86-specific seh directive handling into the x86
backend, which addresses some assembler FIXMEs.
Differential Revision: https://reviews.llvm.org/D66625
llvm-svn: 370533
Users have complained llvm.trap produce two ud2 instructions on Win64,
one for the trap, and one for unreachable. This change fixes that.
TrapUnreachable was added and enabled for Win64 in r206684 (April 2014)
to avoid poorly understood issues with the Windows unwinder.
There seem to be two major things in play:
- the unwinder
- C++ EH, _CxxFrameHandler3 & co
The unwinder disassembles forward from the return address to scan for
epilogues. Inserting a ud2 had the effect of stopping the unwinder, and
ensuring that it ran the EH personality function for the current frame.
However, it's not clear what the unwinder does when the return address
happens to be the last address of one function and the first address of
the next function.
The Visual C++ EH personality, _CxxFrameHandler3, needs to figure out
what the current EH state number is. It does this by consulting the
ip2state table, which maps from PC to state number. This seems to go
wrong when the return address is the last PC of the function or catch
funclet.
I'm not sure precisely which system is involved here, but in order to
address these real or hypothetical problems, I believe it is enough to
insert int3 after a call site if it would otherwise be the last
instruction in a function or funclet. I was able to reproduce some
similar problems locally by arranging for a noreturn call to appear at
the end of a catch block immediately before an unrelated function, and I
confirmed that the problems go away when an extra trailing int3
instruction is added.
MSVC inserts int3 after every noreturn function call, but I believe it's
only necessary to do it if the call would be the last instruction. This
change inserts a pseudo instruction that expands to int3 if it is in the
last basic block of a function or funclet. I did what I could to run the
Microsoft compiler EH tests, and the ones I was able to run showed no
behavior difference before or after this change.
Differential Revision: https://reviews.llvm.org/D66980
llvm-svn: 370525
This is the first stage in refactoring the pipeliner and making it more
accessible for backends to override and control. This separates the logic and
state required to *emit* a scheudule from the logic that *computes* and
validates a schedule.
This will enable (a) new schedule emitters and (b) new modulo scheduling
implementations to coexist.
NFC.
Differential Revision: https://reviews.llvm.org/D67006
llvm-svn: 370500
Just disable NSW/NUW flags. This matches what we're already doing for the other situations for these nodes, it was just missed for the demanded constant case.
Noticed by inspection - confirmed in offline discussion with @spatel. I've checked we have test coverage in the x86 extract-bits.ll and extract-lowbits.ll tests
llvm-svn: 370497
gcc and icc pass these types in zmm registers in zmm registers.
This patch implements a quick hack to override the register
type before calling convention handling to one that is legal.
Longer term we might want to do something similar to 256-bit
integer registers on AVX1 where we just split all the operations.
Fixes PR42957
Differential Revision: https://reviews.llvm.org/D66708
llvm-svn: 370495
Summary:
MTE allows memory access to bypass tag check iff the address argument
is [SP, #imm]. This change takes advantage of this to demote uses of
tagged addresses to regular FrameIndex operands, reducing register
pressure in large functions.
MO_TAGGED target flag is used to signal that the FrameIndex operand
refers to memory that might be tagged, and needs to be handled with
care. Such operand must be lowered to [SP, #imm] directly, without a
scratch register.
The transformation pass attempts to predict when the offset will be
out of range and disable the optimization.
AArch64RegisterInfo::eliminateFrameIndex has an escape hatch in case
this prediction has been wrong, but it is quite inefficient and should
be avoided.
Reviewers: pcc, vitalybuka, ostannard
Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66457
llvm-svn: 370490
I'm looking at unfolding broadcast loads on AVX512 which will
require refactoring this code to select broadcast opcodes instead
of regular load/stores in some cases. Merging them to avoid
further complicating their interfaces.
llvm-svn: 370484
Summary:
Instead of recomputing information for call sites we now use the
function information directly. This is always valid and once we have
call site specific information we can improve here.
This patch also bootstraps attributes that are created on-demand through
an initial update call. Information that is known will then directly be
available in the new attribute without causing an iteration delay.
The tests show how this improves the iteration count.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66781
llvm-svn: 370480
Summary:
Any pointer could have load/store users not only floating ones so we
move the manifest logic for alignment into the AAAlignImpl class.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66922
llvm-svn: 370479
Currenly we can encode the 'st_other' field of symbol using 3 fields.
'Visibility' is used to encode STV_* values.
'Other' is used to encode everything except the visibility, but it can't handle arbitrary values.
'StOther' is used to encode arbitrary values when 'Visibility'/'Other' are not helpfull enough.
'st_other' field is used to encode symbol visibility and platform-dependent
flags and values. Problem to encode it is that it consists of Visibility part (STV_* values)
which are enumeration values and the Other part, which is different and inconsistent.
For MIPS the Other part contains flags for all STO_MIPS_* values except STO_MIPS_MIPS16.
(Like comment in ELFDumper says: "Someones in their infinite wisdom decided to make
STO_MIPS_MIPS16 flag overlapped with other ST_MIPS_xxx flags."...)
And for PPC64 the Other part might actually encode any value.
This patch implements custom logic for handling the st_other and removes
'Visibility' and 'StOther' fields.
Here is an example of a new YAML style this patch allows:
- Name: foo
Other: [ 0x4 ]
- Name: bar
Other: [ STV_PROTECTED, 4 ]
- Name: zed
Other: [ STV_PROTECTED, STO_MIPS_OPTIONAL, 0xf8 ]
Differential revision: https://reviews.llvm.org/D66886
llvm-svn: 370472
This is hidden behind a (scalar-only) isOneConstant(N1) check at the moment, but once we get around to adding vector support we need to ensure we're dealing with the scalar bitwidth, not the total.
llvm-svn: 370468
Summary:
Found a couple of places in the code where all the PHI nodes
of a MBB is updated, replacing references to one MBB by
reference to another MBB instead.
This patch simply refactors the code to use a common helper
(MachineBasicBlock::replacePhiUsesWith) for such PHI node
updates.
Reviewers: t.p.northover, arsenm, uabelho
Subscribers: wdng, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66750
llvm-svn: 370463
Return a proper zero vector, just in case some elements are undef.
Noticed by inspection after dealing with a similar issue in PR43159.
llvm-svn: 370460
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.
In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.
libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ
libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)
So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}
```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
for (; a != a_end; ++a, ++b) {
if (*a != *b) return false;
}
return true;
}
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct Identical {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto Tmp = getVectorOfRandomNumbers<T>(count);
return std::make_pair(Tmp, std::move(Tmp));
}
};
struct InequalHalfway {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto V0 = getVectorOfRandomNumbers<T>(count);
auto V1 = V0;
V1[V1.size() / size_t(2)]++; // just change the value.
return std::make_pair(std::move(V0), std::move(V1));
}
};
template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
benchmark::DoNotOptimize(is_equal);
}
state.SetComplexityN(Length);
state.counters["eltcnt"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["eltcnt/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = []() {
for (const benchmark::CPUInfo::CacheInfo& I :
benchmark::CPUInfo::Get().caches) {
if (I.level == 2) return I.size;
}
return 0;
}();
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N
BM_bcmp<uint8_t, Identical>_RMS 8 % 8 %
<...>
BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N
BM_bcmp<uint16_t, Identical>_RMS 25 % 25 %
<...>
BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N
BM_bcmp<uint32_t, Identical>_RMS 42 % 42 %
<...>
BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N
BM_bcmp<uint64_t, Identical>_RMS 27 % 27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N
BM_bcmp<uint8_t, Identical>_RMS 37 % 37 %
<...>
BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N
BM_bcmp<uint16_t, Identical>_RMS 34 % 34 %
<...>
BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N
BM_bcmp<uint32_t, Identical>_RMS 35 % 35 %
<...>
BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N
BM_bcmp<uint64_t, Identical>_RMS 33 % 33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark Time CPU Time Old Time New CPU Old CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590
<...>
BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948
<...>
BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627
<...>
BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498
```
What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
linearly decreases with element size.
For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
As it can be seen from the full output {F8768210}, the `memcmp()` is almost
universally worse, independent of the element size (and thus buffer size) when
element count is less than 8.
So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.
Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp
Program result-new
MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00
MultiSource/Applications/d/make_dparser 3.00
SingleSource/UnitTests/vla 2.00
MultiSource/Applications/Burg/burg 1.00
MultiSourc.../Applications/JM/lencod/lencod 1.00
MultiSource/Applications/lemon/lemon 1.00
MultiSource/Benchmarks/Bullet/bullet 1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00
MultiSourc...Prolangs-C/simulator/simulator 1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text
Program result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6%
test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5%
test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1%
test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1%
test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1%
test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1%
test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0%
test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0%
test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan%
Geomean difference nan%
result-old result-new diff
count 1.000000e+01 10.00000 10.000000
mean 3.152090e+05 311695.40000 0.006749
std 3.790398e+05 372091.42232 0.036605
min 7.530000e+02 833.00000 -0.034981
25% 4.243300e+04 42401.00000 -0.000866
50% 1.197370e+05 119689.00000 -0.000392
75% 6.397050e+05 639705.00000 -0.000005
max 1.001697e+06 966657.00000 0.106242
```
I don't have timings though.
And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.
Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???
Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet
Reviewed By: courbet
Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61144
llvm-svn: 370454
Summary:
Change LiveDebugValues so that it inserts entry values after the bundle
which contains the clobbering instruction. Previously it would insert
the debug value after the bundle head using insertAfter(), breaking the
bundle.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D66888
llvm-svn: 370448
Extend WindowsResourceParser to support using a ResourceSectionRef for
loading resources from an object file.
Only allow merging resource object files in mingw mode; keep the
existing error on multiple resource objects in link mode.
If there only is one resource object file and no .res resources,
don't parse and recreate the .rsrc section, but just link it in without
inspecting it. This allows users to produce any .rsrc section (outside
of what the parser supports), just like before. (I don't have a specific
need for this, but it reduces the risk of this new feature.)
Separate out the .rsrc section chunks in InputFiles.cpp, and only include
them in the list of section chunks to link if we've determined that there
only was one single resource object. (We need to keep other chunks from
those object files, as they can legitimately contain other sections as
well, in addition to .rsrc section chunks.)
Differential Revision: https://reviews.llvm.org/D66824
llvm-svn: 370436
Instead of updating a global variable counter for the next index of
strings and data blobs, pass along a reference to actual data/string
vectors and let the TreeNode insertion methods add their data/strings to
the vectors when a new entry is needed.
Additionally, if the resource tree had duplicates, that were ignored
with -force:multipleres in lld, we no longer store all versions of the
duplicated resource data, now we only keep the one that actually ends
up referenced.
Differential Revision: https://reviews.llvm.org/D66823
llvm-svn: 370435
This allows llvm-readobj to print the contents of each resource
when printing resources from an object file or executable, like it
already does for plain .res files.
This requires providing the whole COFFObjectFile to ResourceSectionRef.
This supports both object files and executables. For executables,
the DataRVA field is used as is to look up the right section.
For object files, ideally we would need to complete linking of them
and fix up all relocations to know what the DataRVA field would end up
being. In practice, the only thing that makes sense for an RVA field
is an ADDR32NB relocation. Thus, find a relocation pointing at this
field, verify that it has the expected type, locate the symbol it
points at, look up the section the symbol points at, and read from the
right offset in that section.
This works both for GNU windres object files (which use one single
.rsrc section, with all relocations against the base of the .rsrc
section, with the original value of the DataRVA field being the
offset of the data from the beginning of the .rsrc section) and
cvtres object files (with two separate .rsrc$01 and .rsrc$02 sections,
and one symbol per data entry, with the original pre-relocated DataRVA
field being set to zero).
Differential Revision: https://reviews.llvm.org/D66820
llvm-svn: 370433
Add lower for G_FPTOUI. Algorithm is similar to the SDAG version
in TargetLowering::expandFP_TO_UINT.
Lower G_FPTOUI for MIPS32.
Differential Revision: https://reviews.llvm.org/D66929
llvm-svn: 370431
When the number of return values exceeds the number of registers available,
SelectionDAGBuilder::visitRet transforms a function's return to use a
pointer to a buffer to hold return values. When the returned value is an
operator such as extractvalue, the value may have a non-zero result number.
Add that number to the indexing when obtaining the values to store.
This fixes https://bugs.llvm.org/show_bug.cgi?id=43132.
Differential Revision: https://reviews.llvm.org/D66978
llvm-svn: 370430
Unlike ppc64, which has ADDISgotTprelHA+LDgotTprelL pairs,
ppc32 just uses LDgotTprelL32, so it does not make lots of sense to use
_LO without a paired _HA.
Emit R_PPC_GOT_TPREL16 instead R_PPC_GOT_TPREL16_LO to match GCC, and
get better linker relocation check. Note, R_PPC_GOT_TPREL16_{HA,LO}
don't have good linker support:
(a) lld does not support R_PPC_GOT_TPREL16_{HA,LO}.
(b) Top of tree ld.bfd does not support R_PPC_GOT_REL16_HA Initial-Exec -> Local-Exec relaxation:
// a.o
addis 3, 3, tsd_tls@got@tprel@ha
lwz 3, tsd_tls@got@tprel@l(3)
add 3, 3, tsd_tls@tls
// b.o
.section .tdata,"awT"; .globl tsd_tls; tsd_tls:
// ld/ld-new a.o b.o
internal error, aborting at ../../bfd/elf32-ppc.c:7952 in ppc_elf_relocate_section
Reviewed By: adalava
Differential Revision: https://reviews.llvm.org/D66925
llvm-svn: 370426
Add a default with an llvm_unreachable for anything we don't expect.
This seems safer that just blindly returning true for anything
missing from the switch.
llvm-svn: 370424
Add an WASM_SYMBOL_NO_STRIP flag, so that __attribute__((used)) doesn't
need to imply exporting. When targeting Emscripten, have
WASM_SYMBOL_NO_STRIP imply exporting.
Differential Revision: https://reviews.llvm.org/D62542
llvm-svn: 370415
Summary:
Reported in https://github.com/opencv/opencv/issues/15413.
We have serveral extended mnemonics for Move To/From Vector-Scalar Register Instructions
eg: mffprd,mtfprd etc.
We only support one of them, this patch add the others.
Reviewers: nemanjai, steven.zhang, hfinkel, #powerpc
Reviewed By: hfinkel
Subscribers: wuzish, qcolombet, hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66963
llvm-svn: 370411
This teaches GISel to select patterns which fold an extend plus optional shift
into the addressing mode. In particular, adds and subs.
Factor out the arith extended register ComplexPatterns in AArch64InstrFormats.td
and create GISel equivalents.
Add some equivalent functions to the ones in AArch64ISelDAGToDAG:
- `selectArithExtendedRegister`
- `narrowExtendRegIfNeeded`
- `getExtendTypeForInst`
`getExtendTypeForInst` includes the checks for loads and stores. This will be
used for WRO addressing modes in loads + stores.
Teach selectCopy to properly handle subregister copies on the same bank in
order to support `narrowExtendRegIfNeeded`. The extended register must be a
GPR32, so we need to support same-bank subregister copies.
Fix a bug in getSubRegForClass which would cause registers on things like
GPR32common to end up getting ssub. Just change the check to look for FPR32
rather than GPR32.
For tests:
- Add select-arith-extended-reg.mir
- Update addsub_ext.ll to include GlobalISel checks
Differential Revision: https://reviews.llvm.org/D66835
llvm-svn: 370410
Summary:
This is a minor improvement on our past attempts to do this. Fixes
PR43155.
Reviewers: hans
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66905
llvm-svn: 370409
Summary:
There is no reason to differ in assembler behavior here between -msvc
and -gnu targets. Without this setting, the text after the '@' is
interpreted as a symbol variable, like foo@IMGREL.
Reviewers: mstorsjo
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66974
llvm-svn: 370408
ISD::isBuildVectorAllZeros permits undef elements to be present, which means we can't return it as a zero vector. PMULDQ/PMULUDQ is an extending multiply so a multiply by zero of the lower 32-bits should result in a zero 64-bit element.
llvm-svn: 370404
-Deprecate -mmpx and -mno-mpx command line options
-Remove CPUID detection of mpx for -march=native
-Remove MPX from all CPUs
-Remove MPX preprocessor define
I've left the "mpx" string in the backend so we don't fail on old IR, but its not connected to anything.
gcc has also deprecated these command line options. https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
Differential Revision: https://reviews.llvm.org/D66669
llvm-svn: 370393
We can also apply the earlier updates to the lazy DTU, instead of
applying them directly.
Reviewers: kuhar, brzycki, asbirlea, SjoerdMeijer
Reviewed By: brzycki, asbirlea, SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D66918
llvm-svn: 370391
AMDGPU uses this for some addressing mode selection patterns. The
analysis run itself doesn't do anything so it seems easier to just
always require this than adding a way to opt in.
llvm-svn: 370388
Summary:
I'm not planning to check this in at the moment, but feedback is very welcome, in particular how this affects performance.
The feedback obtains here will guide the next steps towards enabling this.
This patch enables the use of MemorySSA in the loop pass manager.
Passes that currently use MemorySSA:
- EarlyCSE
Passes that use MemorySSA after this patch:
- EarlyCSE
- LICM
- SimpleLoopUnswitch
Loop passes that update MemorySSA (and do not use it yet, but could use it after this patch):
- LoopInstSimplify
- LoopSimplifyCFG
- LoopUnswitch
- LoopRotate
- LoopSimplify
- LCSSA
Loop passes that do *not* update MemorySSA:
- IndVarSimplify
- LoopDelete
- LoopIdiom
- LoopSink
- LoopUnroll
- LoopInterchange
- LoopUnrollAndJam
- LoopVectorize
- LoopReroll
- IRCE
Reviewers: chandlerc, george.burgess.iv, davide, sanjoy, gberry
Subscribers: jlebar, Prazek, dmgreen, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58311
llvm-svn: 370384
Add a GISelPredicateCode to the stxr_* PatFrags in AArch64InstrAtomics.td.
This allows us to select these intrinsics.
Differential Revision: https://reviews.llvm.org/D65779
llvm-svn: 370382
Remove manual selection code for this intrinsic and use a GISelPredicateCode
instead.
This allows us to fully select this intrinsic without any tricky custom C++
matching.
Differential Revision: https://reviews.llvm.org/D65780
llvm-svn: 370380
Same thing as D66897, but for ldxr.* instead. Add a GISelPredicateCode to the
ldxr_* definitions, which allows us to import them.
Add select-ldxr-intrin.mir, and update arm64-ldxr-stxr.ll.
Differential Revision: https://reviews.llvm.org/D66898
llvm-svn: 370378
Add a GISelPredicateCode to ldaxr_*. This allows us to import the patterns for
@llvm.aarch64.ldaxr.*, and thus select them.
Add `isLoadStoreOfNumBytes` for the GISelPredicateCode, since each of these
intrinsics involves the same check.
Add select-ldaxr-intrin.mir, and update arm64-ldxr-stxr.ll.
Differential Revision: https://reviews.llvm.org/D66897
llvm-svn: 370377
Summary:
- Similar to the workaround in fix of PR30188, skip sinking common
lifetime markers of `alloca`. They are mostly left there after
inlining functions in branches.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66950
llvm-svn: 370376
Summary:
While examining this class for possible use in lldb, I noticed two
things:
- it spits out parsing errors directly to stderr
- the loclists parser can incorrectly return valid location lists when
parsing malformed (truncated) data
I improve the stderr situation by making the parseOneLocationList
functions return Expected<T>s. The errors are still dumped to stderr by
their callers, so this is only a partial fix, but it is enough for my
use case, as I intend to parse the locations lists one by one.
I fix the behavior in the truncated scenario by using the newly
introduced DataExtractor Cursor API.
I also add tests for handling the error cases, as they currently have no
coverage.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63591
llvm-svn: 370363
Both methods `MipsTargetStreamer::emitStoreWithSymOffset` and
`MipsTargetStreamer::emitLoadWithSymOffset` are almost the same and
differ argument names only. These methods are used in the single place
so it's better to inline their code and remove original methods.
llvm-svn: 370354
When a "base" in the `lw/sw $reg1, symbol($reg2)` instruction is
a register and generated code is position independent, backend
does not add the "base" value to the symbol address.
```
lw $reg1, %got(symbol)($gp)
lw/sw $reg1, 0($reg1)
```
This patch fixes the bug and adds the missed `addu` instruction by
passing `BaseReg` into the `loadAndAddSymbolAddress` routine and handles
the case when the `BaseReg` is the zero register to escape redundant
`move reg, reg` instruction:
```
lw $reg1, %got(symbol)($gp)
addu $reg1, $reg1, $reg2
lw/sw $reg1, 0($reg1)
```
Differential Revision: https://reviews.llvm.org/D66894
llvm-svn: 370353
Summary:
Now that with D65143/D65144 we've produce `@llvm.umul.with.overflow`,
and with D65147 we've flattened the CFG, we now can see that
the guard may have been there to prevent division by zero is redundant.
We can simply drop it:
```
----------------------------------------
Name: no overflow or zero
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %retval.0
=>
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %umul.ov.not
Done: 1
Optimization is correct!
```
Note that this is inverted from what we have in a previous patch,
here we are looking for the inverted overflow bit.
And that inversion is kinda problematic - given this particular
pattern we neither hoist that `not` closer to `ret` (then the pattern
would have been identical to the one without inversion,
and would have been handled by the previous patch), neither
do the opposite transform. But regardless, we should handle this too.
I've filled [[ https://bugs.llvm.org/show_bug.cgi?id=42720 | PR42720 ]].
Reviewers: nikic, spatel, xbolva00, RKSimon
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65151
llvm-svn: 370351
Summary:
Now that with D65143/D65144 we've produce `@llvm.umul.with.overflow`,
and with D65147 we've flattened the CFG, we now can see that
the guard may have been there to prevent division by zero is redundant.
We can simply drop it:
```
----------------------------------------
Name: no overflow and not zero
%iszero = icmp ne i4 %y, 0
%umul = umul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%retval.0 = and i1 %iszero, %umul.ov
ret i1 %retval.0
=>
%iszero = icmp ne i4 %y, 0
%umul = umul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%retval.0 = and i1 %iszero, %umul.ov
ret %umul.ov
Done: 1
Optimization is correct!
```
Reviewers: nikic, spatel, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65150
llvm-svn: 370350
Summary:
As it can be seen in the tests in D65143/D65144, even though we have formed an '@llvm.umul.with.overflow'
and got rid of potential for division-by-zero, the control flow remains, we still have that branch.
We have this condition:
```
// Don't fold i1 branches on PHIs which contain binary operators
// These can often be turned into switches and other things.
if (PN->getType()->isIntegerTy(1) &&
(isa<BinaryOperator>(PN->getIncomingValue(0)) ||
isa<BinaryOperator>(PN->getIncomingValue(1)) ||
isa<BinaryOperator>(IfCond)))
return false;
```
which was added back in rL121764 to help with `select` formation i think?
That check prevents us to flatten the CFG here, even though we know
we no longer need that guard and will be able to drop everything
but the '@llvm.umul.with.overflow' + `not`.
As it can be seen from tests, we end here because the `not` is being
sinked into the PHI's incoming values by InstCombine,
so we can't workaround this by hoisting it to after PHI.
Thus i suggest that we relax that check to not bailout if we'd get to hoist the `not`.
Reviewers: craig.topper, spatel, fhahn, nikic
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65147
llvm-svn: 370349
The missing line added by this patch ensures that only spilt variable
locations are candidates for being restored from the stack. Otherwise,
register or constant-value information can be interpreted as a spill
location, through a union.
The added regression test replicates a scenario where this occurs: the
stack load from [rsp] causes the register-location DBG_VALUE to be
"restored" to rsi, when it should be left alone. See PR43058 for details.
Un x-fail a test that was suffering from this from a previous patch.
Differential Revision: https://reviews.llvm.org/D66895
llvm-svn: 370334
This allows us to produce broken binaries with local
symbols placed after global in '.dynsym'/'.symtab'
Also, simplifies the code.
Differential revision: https://reviews.llvm.org/D66799
llvm-svn: 370331
Masked loads and store fit naturally with MVE, the instructions being easily
predicated. This adds lowering for the simple cases of masked loads and stores.
It does not yet deal with widening/narrowing or pre/post inc.
The llvm masked load intrinsic will accept a "passthru" value, dictating the
values used for the zero masked lanes. In MVE the instructions write 0 to the
zero predicated lanes, so we need to match a passthru that isn't 0 (or undef)
with a select instruction to pull in the correct data after the load.
We also need to do something with unaligned loads/stores. Currently this uses a
similar method used in big endian, using an VLDRB.8 (and potentially a VREV in
BE). This does mean that the predicate mask is converted from, for example, a
v4i1 to a v16i1. The VLDR instructions are defined as using the first bit of
the relevant mask lane, so this could potentially load different results if the
predicate is little odd. As the input is a v4i1 however, I believe this is OK
and all the bits required should be set in the predicate, making the VLDRB.8
load the same data.
Differential Revision: https://reviews.llvm.org/D66534
llvm-svn: 370329
The "join" method in LiveDebugValues does not attempt to join unseen
predecessor blocks if their out-locations aren't yet initialized, instead
the block should be re-visited later to see if any locations have changed
validity. However, because the set of blocks were all being "process"'d
once before "join" saw them, that logic in "join" was actually ignoring
legitimate out-locations on the first pass through. This meant that some
invalidated locations were not removed from the head of loops, allowing
illegal locations to persist.
Fix this by removing the run of "process" before the main join/process loop
in ExtendRanges. Now the unseen predecessors that "join" skips truly are
uninitialized, and we come back to the block at a later time to re-run
"join", see the @baz function added.
This also fixes another fault where stack/register transfers in the entry
block (or any other before-any-loop-block) had their tranfers initially
ignored, and were then never revisited. The MIR test added tests for this
behaviour.
XFail a test that exposes another bug; a fix for this is coming in D66895.
Differential Revision: https://reviews.llvm.org/D66663
llvm-svn: 370328
Summary:
We were previously doing it in DAGCombine.
But we also want to do `sub %x, C` -> `add %x, (sub 0, C)` for vectors in DAGCombine.
So if we had `sub %x, -1`, we'll transform it to `add %x, 1`,
which `combineIncDecVector()` will immediately transform back into `sub %x, -1`,
and here we go again...
I've marked this as NFC since not a single test changes,
but since that 'changes' DAGCombine, probably this isn't fully NFC.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62327
llvm-svn: 370327
Summary: This is beneficial when the shuffle is only used once and end up being generated in a few places when some node is combined into a shuffle.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66718
llvm-svn: 370326
Summary:
Finally, the fold i was looking forward to :)
The legality check is muddy, i doubt i've groked the full generalization,
but it handles all the cases i care about, and can come up with:
https://rise4fun.com/Alive/26j
I.e. we can perform the fold if **any** of the following is true:
* The shift amount is either zero or one less than widest bitwidth
* Either of the values being shifted has at most lowest bit set
* The value that is being shifted by `shl` (which is not truncated) should have no less leading zeros than the total shift amount;
* The value that is being shifted by `lshr` (which **is** truncated) should have no less leading zeros than the widest bit width minus total shift amount minus one
I strongly suspect there is some better generalization, but i'm not aware of it as of right now.
For now i also avoided using actual `computeKnownBits()`, but restricted it to constants.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66383
llvm-svn: 370324
Instead of blindly incrementing pointers in llvm-readobj, use this
helper, which does bounds checking against the available section
data.
Differential Revision: https://reviews.llvm.org/D66818
llvm-svn: 370310
Previously, the expression (Reader.readFoo()) was expanded twice,
triggering asserts as one of the Error types ends up not checked
(and as it was expanded twice, the method would end up called twice
if it failed first).
Differential Revision: https://reviews.llvm.org/D66817
llvm-svn: 370309
We had an isel pattern to perform this, but its better to
do it in DAG combine as a simplification. This also fixes the lack
of patterns for AVX512 targets.
llvm-svn: 370294
Including a type legalizer fix to make bitcast operand promotion
work correctly when getSoftenedFloat returns f128 instead of i128.
Fixes PR43157
llvm-svn: 370293
We do not access the DT in the loop, so we do not have to apply updates
eagerly. We can apply them lazyly and flush them after we are done
merging blocks.
As follow-up work, we might be able to use the DTU above as well,
instead of manually updating the DT.
This brings the example from PR43134 from ~100s to ~4s for a relase +
assertions build on my machine.
Reviewers: efriedma, kuhar, asbirlea, brzycki
Reviewed By: kuhar, brzycki
Differential Revision: https://reviews.llvm.org/D66911
llvm-svn: 370292