All SCEV expressions used by LSR formulae must be safe to
expand. i.e. they may not contain UDiv unless we can prove nonzero
denominator.
Fixes PR11356: LSR hoists UDiv.
llvm-svn: 160205
verifier does. This correctly handles invoke.
Thanks to Duncan, Andrew and Chris for the comments.
Thanks to Joerg for the early testing.
llvm-svn: 151469
know where users will be added. Because of this, it cannot use
Builder.GetInsertPoint at all.
This patch
* removes the FIXME about adding the assert.
* adds a comment explaining hy we don't have one.
* removes a broken logic that only works for some callers and is not needed
since r150884.
* adds an assert to caller that would have caught the bug fixed by r150884.
llvm-svn: 151015
the cast. If we do, we can end up with
inst1
--------------- < Insertion point
dbg inst
new inst
instead of the desired
inst1
new inst
--------------- < Insertion point
dbg inst
Another option would be for InsertNoopCastOfTo (or its callers) to move the
insertion point and we would end up with
inst1
dbg inst
new inst
--------------- < Insertion point
but that complicates the callers. This fixes PR12018 (and firefox's build).
llvm-svn: 150884
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
llvm-svn: 148535
These heuristics are sufficient for enabling IV chains by
default. Performance analysis has been done for i386, x86_64, and
thumbv7. The optimization is rarely important, but can significantly
speed up certain cases by eliminating spill code within the
loop. Unrolled loops are prime candidates for IV chains. In many
cases, the final code could still be improved with more target
specific optimization following LSR. The goal of this feature is for
LSR to make the best choice of induction variables.
Instruction selection may not completely take advantage of this
feature yet. As a result, there could be cases of slight code size
increase.
Code size can be worse on x86 because it doesn't support postincrement
addressing. In fact, when chains are formed, you may see redundant
address plus stride addition in the addressing mode. GenerateIVChains
tries to compensate for the common cases.
On ARM, code size increase can be mitigated by using postincrement
addressing, but downstream codegen currently misses some opportunities.
llvm-svn: 147826
Just because we're dealing with a GEP doesn't mean we can assert the
SCEV has a pointer type. The fix is simply to ignore the SCEV pointer
type, which we really didn't need.
Fixes PR11138 webkit crash.
llvm-svn: 142058
This avoids unnecessary expansion of expressions and allows the SCEV
expander to work on expression DAGs, not just trees.
Fixes PR11090.
llvm-svn: 141870
IVs.
Indvars previously chose randomly between congruent IVs. Now it will
bias the decision toward IVs that SCEVExpander likes to create. This
was not done to fix any problem, it's just a welcome side effect of
factoring code.
llvm-svn: 141633
related bug fixes and corresponding assertions for uninitialized data
and missing NULL check. Test cases will be included with the new LFTR.
llvm-svn: 135333