Follow up to also use the prefixed emitters in OpFormatGen (moved
getGetterName(s) and getSetterName(s) to Operator as that is most
convenient usage wise even though it just depends on Dialect). Prefix
accessors in Test dialect and follow up on missed changes in
OpDefinitionsGen.
Differential Revision: https://reviews.llvm.org/D112118
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Switches to adding target specific, private includes instead of adding
global includes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D109494
While the changes are extensive, they basically fall into a few
categories:
1) Moving the TestDialect itself.
2) Updating C++ code in tablegen to explicitly use ::mlir, since it
will be put in a headers that shouldn't expect a 'using'.
3) Updating some generic MLIR Interface definitions to do the same thing.
4) Updating the Tablegen generator in a few places to be explicit about
namespaces
5) Doing the same thing for llvm references, since we no longer pick
up the definitions from mlir/Support/LLVM.h
Differential Revision: https://reviews.llvm.org/D88251
This can be useful when one needs to know which unrolled iteration an Op belongs to, for example, conveying noalias information among memory-affecting ops in parallel-access loops.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D107789
test/lib/Transforms/ has bitrot and become somewhat of a dumping grounds for testing pretty much any part of the project. This revision cleans this up, and moves the files within to a directory that reflects what is actually being tested.
Differential Revision: https://reviews.llvm.org/D102456
Instead of an SCF for loop, these pattern generate fully unrolled loops with no temporary buffer allocations.
Differential Revision: https://reviews.llvm.org/D101981
According to the API contract, LinalgLoopDistributionOptions
expects to work on parallel iterators. When getting processor
information, only loop ranges for parallel dimensions should
be fed in. But right now after generating scf.for loop nests,
we feed in *all* loops, including the ones materialized for
reduction iterators. This can cause unexpected distribution
of reduction dimensions. This commit fixes it.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D102079
This revision migrates more code from Linalg into the new permanent home of
SparseTensor. It replaces the test passes with proper compiler passes.
NOTE: the actual removal of the last glue and clutter in Linalg will follow
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101811
Move TransposeOp lowering in its own populate function as in some cases
it is better to keep it during ContractOp lowering to better
canonicalize it rather than emiting scalar insert/extract.
Differential Revision: https://reviews.llvm.org/D101647
Three patterns are added to convert into vector.multi_reduction into a
sequence of vector.reduction as the following:
- Transpose the inputs so inner most dimensions are always reduction.
- Reduce rank of vector.multi_reduction into 2d with inner most
reduction dim (get the 2d canical form)
- 2D canonical form is converted into a sequence of vector.reduction.
There are two things we might worth in a follow up diff:
- An scf.for (maybe optionally) around vector.reduction instead of unrolling it.
- Breakdown the vector.reduction into a sequence of vector.reduction
(e.g tree-based reduction) instead of relying on how downstream dialects
handle it.
Note: this will requires passing target-vector-length
Differential Revision: https://reviews.llvm.org/D101570
This is the very first step toward removing the glue and clutter from linalg and
replace it with proper sparse tensor types. This revision migrates the LinalgSparseOps
into SparseTensorOps of a sparse tensor dialect. This also provides a new home for
sparse tensor related transformation.
NOTE: the actual replacement with sparse tensor types (and removal of linalg glue/clutter)
will follow but I am trying to keep the amount of changes per revision manageable.
Differential Revision: https://reviews.llvm.org/D101573
This is the very first step toward removing the glue and clutter from linalg and
replace it with proper sparse tensor types. This revision migrates the LinalgSparseOps
into SparseTensorOps of a sparse tensor dialect. This also provides a new home for
sparse tensor related transformation.
NOTE: the actual replacement with sparse tensor types (and removal of linalg glue/clutter)
will follow but I am trying to keep the amount of changes per revision manageable.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101488
FillOp allows complex ops, and filling a properly sized buffer with
a default zero complex number is implemented.
Differential Revision: https://reviews.llvm.org/D99939
Add a new ProgressiveVectorToSCF pass that lowers vector transfer ops to SCF by gradually unpacking one dimension at time. Unpacking stops at 1D, but can be configured to stop earlier, should the HW support (N>1)-d vectors.
The current implementation cannot handle permutation maps, masks, tensor types and unrolling yet. These will be added in subsequent commits. Once features are on par with VectorToSCF, this implementation will replace VectorToSCF.
Differential Revision: https://reviews.llvm.org/D100622
Instead of interchanging loops during the loop lowering this pass performs the interchange by permuting the indexing maps. It also updates the iterator types and the index accesses in the body of the operation.
Differential Revision: https://reviews.llvm.org/D100627
The `linalg.index` operation provides access to the iteration indexes of immediately enclosing linalg operations. It takes a dimension `dim` attribute and returns the iteration index in the given dimension. Having `linalg.index` allows us to unify `linalg.generic` and `linalg.indexed_generic` and also enables index access in named operations.
Differential Revision: https://reviews.llvm.org/D100292
Right now Elementwise operations fusion in Linalg fuses everything it
can. This can run up against resource limits of the target hardware
without some checks. This patch adds a callback function that clients
can use to implement a cost function. When two elementwise operations
are deemed structurally fusable, the callback can be used to control
if the fusion applies.
Differential Revision: https://reviews.llvm.org/D99820
Fixes a bug in affine fusion pipeline where an incorrect slice is computed.
After the slice computation is done, original domain of the the source is
compared with the new domain that will result if the fusion succeeds. If the
new domain must be a subset of the original domain for the slice to be
valid. If the slice computed is incorrect, fusion based on such a slice is
avoided.
Relevant test cases are added/edited.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49203
Differential Revision: https://reviews.llvm.org/D98239
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Until now Linalg fusion only allow fusing producers whose operands
are all permutation indexing maps. It's easier to deduce the
subtensor/subview but it is an unnecessary constraint, as in tiling
we have more advanced logic to deduce the subranges even when the
operand is not of permutation indexing maps, e.g., the input operand
for convolution ops.
This patch uses the logic on tiling side to deduce subranges for
fusion. This enables fusing convolution with its consumer ops
when possible.
Along the way, we are now generating proper affine.min ops to guard
against size boundaries, if we cannot be certain they won't be
out of bounds.
Differential Revision: https://reviews.llvm.org/D99014
This is useful for bit-packing types such as vectors and tuples as well as for
exotic architectures that have non-8-bit bytes.
Depends On D98500
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D98524
ModuleOp is a natural place to provide scoped data layout information. However,
it is undesirable for ModuleOp to implement the entirety of
DataLayoutOpInterface because that would require either pushing the interface
inside the IR library instead of a separate library, or putting the default
implementation of the interface as inline functions in headers leading to
binary bloat. Instead, ModuleOp accepts an arbitrary data layout spec attribute
and has a dedicated hook to extract it, and DataLayout is modified to know
about ModuleOp particularities.
Reviewed By: herhut, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98500
Fix the BlockAndValueMapping update that was missing entries for scf.for op's blockIterArgs.
Skip cloning subtensors of the padded tensor as the logic for these is separate.
Add a filter to drop side-effecting ops.
Tests are beefed up to verify the IR is sound in all hoisting configurations for 2-level 3-D tiled matmul.
Differential Revision: https://reviews.llvm.org/D99255
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This nicely aligns the naming with RewritePatternSet. This type isn't
as widely used, but we keep a using declaration in to help with
downstream consumption of this change.
Differential Revision: https://reviews.llvm.org/D99131
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
This change combines for ROCm what was done for CUDA in D97463, D98203, D98360, and D98396.
I did not try to compile SerializeToHsaco.cpp or test mlir/test/Integration/GPU/ROCM because I don't have an AMD card. I fixed the things that had obvious bit-rot though.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D98447
This patch introduces progressive lowering patterns for rewriting
vector.transfer_read/write to vector.load/store and vector.broadcast
in certain supported cases.
Reviewed By: dcaballe, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97822
Data layout information allows to answer questions about the size and alignment
properties of a type. It enables, among others, the generation of various
linear memory addressing schemes for containers of abstract types and deeper
reasoning about vectors. This introduces the subsystem for modeling data
layouts in MLIR.
The data layout subsystem is designed to scale to MLIR's open type and
operation system. At the top level, it consists of attribute interfaces that
can be implemented by concrete data layout specifications; type interfaces that
should be implemented by types subject to data layout; operation interfaces
that must be implemented by operations that can serve as data layout scopes
(e.g., modules); and dialect interfaces for data layout properties unrelated to
specific types. Built-in types are handled specially to decrease the overall
query cost.
A concrete default implementation of these interfaces is provided in the new
Target dialect. Defaults for built-in types that match the current behavior are
also provided.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97067
Clean-up after D98279, remove one call to createConvertGPUKernelToBlobPass().
Depends On D98203
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98360
This makes it easy to compose the distribution computation with
other affine computations.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D98171
There is no need for the interface implementations to be exposed, opaque
registration functions are sufficient for all users, similarly to passes.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97852