When we are consuming the current token just to enter a new token stream, we push
the current token in the back of the stream so that we get it again.
Unfortunately this had the effect where if the current token is a code-completion one,
we would code-complete once during consuming it and another time after the stream ended.
Fix this by making sure that, in this case, ConsumeAnyToken() will consume a code-completion
token without invoking code-completion.
rdar://12842503
llvm-svn: 178199
with function definitions.
We really should remove Parser::isDeclarationAfterDeclarator entirely, since
it's meaningless in C++11 (an open brace could be either a function definition
or an initializer, which is what it's trying to differentiate between). The
other caller of it happens to be correct right now...
llvm-svn: 172510
C++11 allowed writing "vector<vector<int>>" without a space between the two ">".
This change allows this for protocols in template lists too in -std=c++11 mode,
and improves the diagnostic in c++98 mode.
llvm-svn: 170223
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
/// \param TemplateParams if non-NULL, the template parameter lists
/// that preceded this declaration. In this case, the declaration is a
/// template declaration, out-of-line definition of a template, or an
/// explicit template specialization. When NULL, the declaration is an
/// explicit template instantiation.
///
/// \param TemplateLoc when TemplateParams is NULL, the location of
/// the 'template' keyword that indicates that we have an explicit
/// template instantiation.
llvm-svn: 167982
attributes in more places where we didn't and catching a lot more issues.
This implements nearly every aspect of C++11 attribute parsing, except for:
- Attributes are permitted on explicit instantiations inside the declarator
(but not preceding the decl-spec)
- Attributes are permitted on friend declarations of functions.
- Multiple instances of the same attribute in an attribute-list (e.g.
[[noreturn, noreturn]], not [[noreturn]] [[noreturn]] which is conforming)
are allowed.
The first two are marked as expected-FIXME in the test file and the latter
is probably a defect and is currently untested.
Thanks to Richard Smith for providing the lion's share of the testcases.
llvm-svn: 159072
also deal with '>>>' (in CUDA), '>=', and '>>='. Fix the FixItHints logic to
deal with cases where the token is followed by an adjacent '=', '==', '>=',
'>>=', or '>>>' token, where a naive fix-it would result in a differing token
stream on a re-lex.
llvm-svn: 158652
us to improve this diagnostic (telling us to insert another ")":
t.c:2:19: error: expected ';' at end of declaration
int x = 4+(5-12));
^
;
to:
t.c:2:19: error: extraneous ')' before ';'
int x = 4+(5-12));
^
...telling us to remove the ")". This is PR12595. There are more uses of ExpectAndConsumeSemi
that could be switched over, but I don't hit them on a daily basis :)
llvm-svn: 155759
Instead, make it the allocation function's responsibility to add them
to a list and clear it when a top-level decl is finished.
This plugs leakage of TemplateAnnotationIds. DelayedCleanupPool is
ugly and unused, remove it.
llvm-svn: 154743
Specifically, using a an integer outside [0, 1] as a boolean constant seems to
be an easy mistake to make with things like "x == a || b" where the author
intended "x == a || x == b".
The bug caused by calling SkipUntil with three token kinds was also identified
by a VC diagnostic & reported by Francois Pichet as review feedback for my
commit r154163. I've included test cases to verify the error recovery that was
broken/poorly implemented due to this bug.
The other fix (lib/Sema/SemaExpr.cpp) seems like that code was never actually
reached in any of Clang's tests & is related to Objective C features I'm not
familiar with, so I've not been able to construct a test case for it. Perhaps
someone else can.
llvm-svn: 154325
In a few cases clang emitted a rather content-free diagnostic: 'parse error'.
This change replaces two actual cases (template parameter parsing and K&R
parameter declaration parsing) with more specific diagnostics and removes a
third dead case of this in the BalancedDelimiterTracker (the ctor already
checked the invariant necessary to ensure that the diag::parse_error was never
actually used).
llvm-svn: 154224
Based on Doug's feedback to r153887 this omits the FixIt if the following token
isn't syntactically valid for the context. (not a comma, '...', identifier,
'>', or '>>')
There's a bunch of work to handle the '>>' case, but it makes for a much more
pleasant diagnostic in this case.
llvm-svn: 154163
The diagnostic message correctly informs the user that they have omitted the
'class' keyword, but neither suggests this insertion as a fixit, nor attempts
to recover as if they had provided the keyword.
This fixes the recovery, adds the fixit, and adds a separate diagnostic and
corresponding replacement fixit for cases where the user wrote 'struct' or
'typename' instead of 'class' (suggested by Richard Smith as a possible common
mistake).
I'm not sure the diagnostic message for either the original or new cases feel
very Clang-esque, so I'm open to suggestions there. The fixit hints make it
fairly easy to see what's required, though.
llvm-svn: 153887
For compatibility with gcc, clang will now parse gcc attributes on
function definitions, but issue a warning if the attribute is not a
thread safety attribute. Warning controlled by -Wgcc-compat.
llvm-svn: 150698
o Correct the handling of the restrictions on usage of cv-qualified and
ref-qualified function types.
o Fix a bug where such types were rejected in template type parameter default
arguments, due to such arguments not being treated as a template type arg
context.
o Remove the ExtWarn for usage of such types as template arguments; that was
a standard defect, not a GCC extension.
o Improve the wording and unify the code for diagnosing cv-qualifiers with the
code for diagnosing ref-qualifiers.
llvm-svn: 150244
declaration tickles a bug in the way we handle visibility pragmas.
The improvement to error recovery for template function definitions declared
with the 'typedef' specifier in r145372 is unrelated and not reverted here.
llvm-svn: 145541
declaration at namespace scope is followed by a semicolon and an open-brace
(or in C++, a 'try', ':' or '='), then the error is probably a function
definition with a spurious ';', rather than a mysterious '{'.
llvm-svn: 145372
C++11 mode but keep their sources compatible with C++98. This patch implements
the -Wc++98-compat-variadic-templates sub-flag and -Wc++98-compat to include
it.
llvm-svn: 141898
the information on to Sema. There's still an incorrectness in the way template instantiation
works now, but that is due to a far larger underlying representational problem.
Also add a test case for various list initialization cases of scalars, which test this
commit as well as the previous one.
llvm-svn: 140460
The solution is to create a new ParseScope(Scope::TemplateParamScope) for each template scope that we want to reenter. (from the outmost to the innermost scope)
This fixes some errors when parsing MFC code with clang.
llvm-svn: 140344
lifetime is well-known and restricted, cleaning them up manually is easy to miss and cause a leak.
Use it to plug the leaking of TemplateIdAnnotation objects. rdar://9634138.
llvm-svn: 133610
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
access-control diagnostics which arise from the portion of the declarator
following the scope specifier, just in case access is granted by
friending the individual method. This can also happen with in-line
member function declarations of class templates due to templated-scope
friend declarations.
We were really playing fast-and-loose before with this sort of thing,
and it turned out to work because *most* friend functions are in file
scope. Making us delay regardless of context exposed several bugs with
how we were manipulating delay. I ended up needing a concept of a
context that's independent of the declarations in which it appears,
and then I actually had to make some things save contexts correctly,
but delay should be much cleaner now.
I also encapsulated all the delayed-diagnostics machinery in a single
subobject of Sema; this is a pattern we might want to consider rolling
out to other components of Sema.
llvm-svn: 125485
allow ref-qualifiers on function types used as template type
arguments. GNU actually allows cv-qualifiers on function types in many
places where it shouldn't, so we currently categorize this as a GNU
extension.
llvm-svn: 124584
ExtWarn. We want variadic templates to be usable in libc++/libstdc++
headers even when we're in C++98/03 mode, since it's the only clean
way to implement TR1 <functional>.
llvm-svn: 123852
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
themselves have no template parameters. This is actually a restriction
due to the grammar of template template parameters, but we choose to
diagnose it in Sema to provide better recovery.
llvm-svn: 117032
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
a function prototype is followed by a declarator if we
aren't parsing a K&R style identifier list.
Also, avoid skipping randomly after a declaration if a
semicolon is missing. Before we'd get:
t.c:3:1: error: expected function body after function declarator
void bar();
^
Now we get:
t.c:1:11: error: invalid token after top level declarator
void foo()
^
;
llvm-svn: 108105
allows Sema some limited access to the current scope, which we only
use in one way: when Sema is performing some kind of declaration that
is not directly driven by the parser (e.g., due to template
instantiatio or lazy declaration of a member), we can find the Scope
associated with a DeclContext, if that DeclContext is still in the
process of being parsed.
Use this to make the implicit declaration of special member functions
in a C++ class more "scope-less", rather than using the NULL Scope hack.
llvm-svn: 107491
parameters starts at the end of the template-parameter rather than at
the point where the template parameter name is encounted. For example,
given:
typedef unsigned char T;
template<typename T = T> struct X0 { };
The "T" in the default argument refers to the typedef of "unsigned
char", rather than referring to the newly-introduced template type
parameter 'T'.
Addresses <rdar://problem/8122812>.
llvm-svn: 107354
(or operator-function-id) as a template, but the context is actually
non-dependent or the current instantiation, allow us to use knowledge
of what kind of template it is, e.g., type template vs. function
template, for further syntactic disambiguation. This allows us to
parse properly in the presence of stray "template" keywords, which is
necessary in C++0x and it's good recovery in C++98/03.
llvm-svn: 106167
disambiguation keywords outside of templates in C++98/03. Previously,
the warning would fire when the associated nested-name-specifier was
not dependent, but that was a misreading of the C++98/03 standard:
now, we complain only when we're outside of any template.
llvm-svn: 106161
the required "template" keyword, using the same heuristics we do for
dependent template names in member access expressions, e.g.,
test/SemaTemplate/dependent-template-recover.cpp:11:8: error: use 'template'
keyword to treat 'getAs' as a dependent template name
T::getAs<U>();
^
template
Fixes PR5404.
llvm-svn: 104409
that is missing the 'template' keyword, e.g.,
t->getAs<T>()
where getAs is a member of an unknown specialization. C++ requires
that we treat "getAs" as a value, but that would fail to parse since T
is the name of a type. We would then fail at the '>', since a type
cannot be followed by a '>'.
This is a very common error for C++ programmers to make, especially
since GCC occasionally allows it when it shouldn't (as does Visual
C++). So, when we are in this case, we use tentative parsing to see if
the tokens starting at "<" can only be parsed as a template argument
list. If so, we produce a diagnostic with a fix-it that states that
the 'template' keyword is needed:
test/SemaTemplate/dependent-template-recover.cpp:5:8: error: 'template' keyword
is required to treat 'getAs' as a dependent template name
t->getAs<T>();
^
template
This is just a start of this patch; I'd like to apply the same
approach to everywhere that a template-id with dependent template name
can be parsed.
llvm-svn: 104406
that name constructors, the endless joys of out-of-line constructor
definitions, and various other corner cases that the previous hack
never imagined. Fixes PR5688 and tightens up semantic analysis for
constructor names.
Additionally, fixed a problem where we wouldn't properly enter the
declarator scope of a parenthesized declarator. We were entering the
scope, then leaving it when we saw the ")"; now, we re-enter the
declarator scope before parsing the parameter list.
Note that we are forced to perform some tentative parsing within a
class (call it C) to tell the difference between
C(int); // constructor
and
C (f)(int); // member function
which is rather unfortunate. And, although it isn't necessary for
correctness, we use the same tentative-parsing mechanism for
out-of-line constructors to improve diagnostics in icky cases like:
C::C C::f(int); // error: C::C refers to the constructor name, but
// we complain nicely and recover by treating it as
// a type.
llvm-svn: 93322