The main issue was the Communication::Disconnect() was calling its Connection::Disconnect() but this wouldn't release the pipes that the ConnectionFileDescriptor was using. We also have someone that is holding a strong reference to the Process so that when you re-run, target replaces its m_process_sp, but it doesn't get destructed because someone has a strong reference to it. I need to track that down. But, even if we have a strong reference to the a process that is outstanding, we need to call Process::Finalize() to have it release as much of its resources as possible to avoid memory bloat.
Removed the ProcessGDBRemote::SetExitStatus() override and replaced it with ProcessGDBRemote::DidExit().
Now we aren't leaking file descriptors and the stand alone test suite should run much better.
llvm-svn: 238089
The feature itself has been committed by Johannes in r238070. As this is the
way forward, we now enable it to ensure we get test coverage.
Thank you Johannes for this nice work!
llvm-svn: 238088
This ensures we pass all tests independently of how we set the options
-disable-polly-intra-scop-scalar-to-array and -polly-model-phi-nodes.
(At least if we enable both or disable both. Enabling them individually makes
little sense, as they will hopefully disappear soon anyhow).
llvm-svn: 238087
Remove all virtual functions from `DIEValue`, dropping the vtable
pointer from its layout. Instead, create "impl" functions on the
subclasses, and use the `DIEValue::Type` to implement the dynamic
dispatch.
This is necessary -- obviously not sufficient -- for passing `DIEValue`s
around by value. However, this change stands on its own: we make tons
of these. I measured a drop in memory usage from 888 MB down to 860 MB,
or around 3.2%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238084
An AtomicType might be hidden behind arbitrary levels of typedefs.
getAs<> will reliably walk through the sugar to get the underlying
AtomicType.
This fixes PR23638.
llvm-svn: 238083
This is part of the work to remove TargetMachine::resetTargetOptions.
In this patch, instead of updating global variable NoFramePointerElim in
resetTargetOptions, its use in DisableFramePointerElim is replaced with a call
to TargetFrameLowering::noFramePointerElim. This function determines on a
per-function basis if frame pointer elimination should be disabled.
There is no change in functionality except that cl:opt option "disable-fp-elim"
can now override function attribute "no-frame-pointer-elim".
llvm-svn: 238080
Normally an ELF .o has two string tables, one for symbols, one for section
names.
With the scheme of naming sections like ".text.foo" where foo is a symbol,
there is a big potential saving in using a single one.
Building llvm+clang+lld with master and with this patch the results were:
master: 193,267,008 bytes
patch: 186,107,952 bytes
master non unique section names: 183,260,192 bytes
patch non unique section names: 183,118,632 bytes
So using non usique saves 10,006,816 bytes, and the patch saves 7,159,056 while
still using distinct names for the sections.
llvm-svn: 238073
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.
The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.
In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.
Differential Revision: http://reviews.llvm.org/D9763
llvm-svn: 238071
To reduce compile time and to allow more and better quality SCoPs in
the long run we introduced scalar dependences and PHI-modeling. This
patch will now allow us to generate code if one or both of those
options are set. While the principle of demoting scalars as well as
PHIs to memory in order to communicate their value stays the same,
this allows to delay the demotion till the very end (the actual code
generation). Consequently:
- We __almost__ do not modify the code if we do not generate code
for an optimized SCoP in the end. Thus, the early exit as well as
the unprofitable option will now actually preven us from
introducing regressions in case we will probably not get better
code.
- Polly can be used as a "pure" analyzer tool as long as the code
generator is set to none.
- The original SCoP is almost not touched when the optimized version
is placed next to it. Runtime regressions if the runtime checks
chooses the original are not to be expected and later
optimizations do not need to revert the demotion for that part.
- We will generate direct accesses to the demoted values, thus there
are no "trivial GEPs" that select the first element of a scalar we
demoted and treated as an array.
Differential Revision: http://reviews.llvm.org/D7513
llvm-svn: 238070
InstCombine transforms A *nsw B +nsw A *nsw C to A *nsw (B + C).
This is incorrect -- e.g. if A = -1, B = 1, C = INT_SMAX. Then
nothing in the LHS overflows, but the multiplication in RHS overflows.
We need to first make sure that we won't multiple by INT_SMAX + 1.
Test case `add_of_mul` contributed by Sanjoy Das.
This fixes PR23635.
Differential Revision: http://reviews.llvm.org/D9629
llvm-svn: 238066
Windows does not use AAPCS, but rather AAPCS-VFP, and thus the functions which
are assumed to be AAPCS will cause invalid argument setup. Ensure that the
functions are marked as AAPCS.
llvm-svn: 238056
The usual CodeGenPrepare trickery, on a target-specific intrinsic.
Without this, the expansion of atomics will usually have the zext
be hoisted out of the loop, defeating the various patterns we have
to catch this precise case.
Differential Revision: http://reviews.llvm.org/D9930
llvm-svn: 238054
This patch adds a class for processing many recip codegen possibilities.
The TargetRecip class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238051
Before, getCanonicalArchName was relying on parseArch() to validate the arch
name, which was a problem when other methods, that also needed to call it,
were duplicating the steps.
But to dissociate getCanonicalArchName from parseArch, we needed to make
getCanonicalArchName more robust in detecting valid arch names. It's still
not perfect, but will do for the time being, until we merge Triple with
TargetParser into a TargetDescription mega class.
llvm-svn: 238047
This test takes over 5 minutes to run just by itself, and everything
fails anyway, so it doesn't make sense to keep it running for now.
llvm-svn: 238040