Summary:
Enumerating /proc/<pid>/task/ dir Linux may stop if thread is dead. In this case
we miss some alive threads and can report false memory leaks.
To solve this issue we repeat enumeration if the last thread is dead.
Do detect dead threads same way as proc_task_readdir we use
/proc/<pid>/task/<tid>/status.
Similarly it also ends enumeration of if proc_fill_cache fails, but in this case
Linux sets inode to 1 (Bad block).
And just in case re-list threads if we had to call internal_getdents more than
twice or result takes more than half of the buffer.
Reviewers: eugenis, dvyukov, glider
Subscribers: llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D46517
llvm-svn: 331953
Summary:
One forgotten file change + reordering one header due to clang-format
Patch by David CARLIER
Reviewers: vitalybuka, vsk
Subscribers: kubamracek, fedor.sergeev, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D44556
llvm-svn: 327758
Summary:
This is the first mostly working version of the Sanitizer port to 32-bit Solaris/x86.
It is currently based on Solaris 11.4 Beta.
This part was initially developed inside libsanitizer in the GCC tree and should apply to
both. Subsequent parts will address changes to clang, the compiler-rt build system
and testsuite.
I'm not yet sure what the right patch granularity is: if it's profitable to split the patch
up, I'd like to get guidance on how to do so.
Most of the changes are probably straightforward with a few exceptions:
* The Solaris syscall interface isn't stable, undocumented and can change within an
OS release. The stable interface is the libc interface, which I'm using here, if possible
using the internal _-prefixed names.
* While the patch primarily target 32-bit x86, I've left a few sparc changes in. They
cannot currently be used with clang due to a backend limitation, but have worked
fine inside the gcc tree.
* Some functions (e.g. largefile versions of functions like open64) only exist in 32-bit
Solaris, so I've introduced a separate SANITIZER_SOLARIS32 to check for that.
The patch (with the subsequent ones to be submitted shortly) was tested
on i386-pc-solaris2.11. Only a few failures remain, some of them analyzed, some
still TBD:
AddressSanitizer-i386-sunos :: TestCases/Posix/concurrent_overflow.cc
AddressSanitizer-i386-sunos :: TestCases/init-order-atexit.cc
AddressSanitizer-i386-sunos :: TestCases/log-path_test.cc
AddressSanitizer-i386-sunos :: TestCases/malloc-no-intercept.c
AddressSanitizer-i386-sunos-dynamic :: TestCases/Posix/concurrent_overflow.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/Posix/start-deactivated.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/default_options.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/init-order-atexit.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/log-path_test.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/malloc-no-intercept.c
SanitizerCommon-Unit :: ./Sanitizer-i386-Test/MemoryMappingLayout.DumpListOfModules
SanitizerCommon-Unit :: ./Sanitizer-i386-Test/SanitizerCommon.PthreadDestructorIterations
Maybe this is good enough the get the ball rolling.
Reviewers: kcc, alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, jyknight, kubamracek, krytarowski, fedor.sergeev, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D40898
llvm-svn: 320740
Summary:
See D40657 & D40679 for previous versions of this patch & description.
A couple of things were fixed here to have it not break some bots.
Weak symbols can't be used with `SANITIZER_GO` so the previous version was
breakin TsanGo. I set up some additional local tests and those pass now.
I changed the workaround for the glibc vDSO issue: `__progname` is initialized
after the vDSO and is actually public and of known type, unlike
`__vdso_clock_gettime`. This works better, and with all compilers.
The rest is the same.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, kubamracek, krytarowski, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D41121
llvm-svn: 320594
Summary:
Redo of D40657, which had the initial discussion. The initial code had to move
into a libcdep file, and things had to be shuffled accordingly.
`NanoTime` is a time sink when checking whether or not to release memory to
the OS. While reducing the amount of calls to said function is in the works,
another solution that was found to be beneficial was to use a timing function
that can leverage the vDSO.
We hit a couple of snags along the way, like the fact that the glibc crashes
when clock_gettime is called from a preinit_array, or the fact that
`__vdso_clock_gettime` is mangled (for security purposes) and can't be used
directly, and also that clock_gettime can be intercepted.
The proposed solution takes care of all this as far as I can tell, and
significantly improve performances and some Scudo load tests with memory
reclaiming enabled.
@mcgrathr: please feel free to follow up on
https://reviews.llvm.org/D40657#940857 here. I posted a reply at
https://reviews.llvm.org/D40657#940974.
Reviewers: alekseyshl, krytarowski, flowerhack, mcgrathr, kubamracek
Reviewed By: alekseyshl, krytarowski
Subscribers: #sanitizers, mcgrathr, srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D40679
llvm-svn: 320409
Summary:
NetBSD is an Open-Source POSIX-like BSD Operating System.
Part of the code inspired by the original work on libsanitizer in GCC 5.4 by Christos Zoulas.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, kcc, vitalybuka, filcab, fjricci
Reviewed By: kcc
Subscribers: llvm-commits, kubamracek, mgorny, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D37193
llvm-svn: 311933
Summary:
Follow FreeBSD and reuse sanitizer_linux for NetBSD.
Part of the code inspired by the original work on libsanitizer in GCC 5.4 by Christos Zoulas.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, kcc, filcab, vitalybuka, fjricci, dvyukov
Reviewed By: fjricci
Subscribers: dvyukov, emaste, kubamracek, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D36325
llvm-svn: 310411
Summary:
libsanitizer doesn't build against latest glibc anymore, see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81066 for details.
One of the changes is that stack_t changed from typedef struct sigaltstack { ... } stack_t; to typedef struct { ... } stack_t; for conformance reasons.
And the other change is that the glibc internal __need_res_state macro is now ignored, so when doing
```
#define __need_res_state
#include <resolv.h>
```
the effect is now the same as just
```
#include <resolv.h>
```
and thus one doesn't get just the
```
struct __res_state { ... };
```
definition, but newly also the
```
extern struct __res_state *__res_state(void) __attribute__ ((__const__));
```
prototype. So __res_state is no longer a type, but a function.
Reviewers: kcc, ygribov
Reviewed By: kcc
Subscribers: kubamracek
Differential Revision: https://reviews.llvm.org/D35246
llvm-svn: 307969
Summary:
TSan's Android `__get_tls()` and `TLS_SLOT_TSAN` can be used by other sanitizers as well (see D32649), this change moves them to sanitizer_common.
I picked sanitizer_linux.h as their new home.
In the process, add the 32-bit versions for ARM, i386 & MIPS.
Can the address of `__get_tls()[TLS_SLOT_TSAN]` change in between the calls?
I am not sure if there is a need to repeat the construct as opposed to using a variable. So I left things as they were.
Testing on my side was restricted to a successful cross-compilation.
Reviewers: dvyukov, kubamracek
Reviewed By: dvyukov
Subscribers: aemerson, rengolin, srhines, dberris, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D32705
llvm-svn: 301926
Breaks tests on i686/Linux due to missing clang driver support:
error: unsupported option '-fsanitize=leak' for target 'i386-unknown-linux-gnu'
llvm-svn: 292844
People keep asking LSan to be available on 32 bit targets (e.g. https://github.com/google/sanitizers/issues/403)
despite the fact that false negative ratio might be huge (up to 85%). This happens for big real world applications
that may contain random binary data (e.g. browser), but for smaller apps situation is not so terrible and LSan still might be useful.
This patch adds initial support for x86 Linux (disabled by default), ARM32 is in TODO list.
We used this patch (well, ported to GCC) on our 32 bit mobile emulators and it worked pretty fine
thus I'm posting it here to initiate further discussion.
Differential Revision: https://reviews.llvm.org/D28609
llvm-svn: 292775
With this patch 10 out of 13 tests are passing.
Following is the list of failing tests:
struct-simple.cpp
workingset-signal-posix.cpp
mmap-shadow-conflict.c
Reviewed by bruening
Differential: D23799
llvm-svn: 280795
Summary:
Adds a version of sigaction that uses a raw system call, to avoid circular
dependencies and support calling sigaction prior to setting up
interceptors. The new sigaction relies on an assembly sigreturn routine
for its restorer, which is Linux x86_64-only for now.
Uses the new sigaction to initialize the working set tool's shadow fault
handler prior to libc interceptor being set up. This is required to
support instrumentation invoked during interceptor setup, which happens
with an instrumented tcmalloc or other allocator compiled with esan.
Adds a test that emulates an instrumented allocator.
Reviewers: aizatsky
Subscribers: vitalybuka, tberghammer, zhaoqin, danalbert, kcc, srhines, eugenis, llvm-commits, kubabrecka
Differential Revision: http://reviews.llvm.org/D21083
llvm-svn: 272676
Summary:
Adds a version of sigaction that uses a raw system call, to avoid circular
dependencies and support calling sigaction prior to setting up
interceptors. The new sigaction relies on an assembly sigreturn routine
for its restorer, which is Linux x86_64-only for now.
Uses the new sigaction to initialize the working set tool's shadow fault
handler prior to libc interceptor being set up. This is required to
support instrumentation invoked during interceptor setup, which happens
with an instrumented tcmalloc or other allocator compiled with esan.
Adds a test that emulates an instrumented allocator.
Reviewers: aizatsky
Subscribers: vitalybuka, tberghammer, zhaoqin, danalbert, kcc, srhines, eugenis, llvm-commits, kubabrecka
Differential Revision: http://reviews.llvm.org/D21083
llvm-svn: 272591
Summary:
Adds a version of sigaction that uses a raw system call, to avoid circular
dependencies and support calling sigaction prior to setting up
interceptors. The new sigaction relies on an assembly sigreturn routine
for its restorer, which is Linux x86_64-only for now.
Uses the new sigaction to initialize the working set tool's shadow fault
handler prior to libc interceptor being set up. This is required to
support instrumentation invoked during interceptor setup, which happens
with an instrumented tcmalloc or other allocator compiled with esan.
Adds a test that emulates an instrumented allocator.
Reviewers: aizatsky
Subscribers: vitalybuka, tberghammer, zhaoqin, danalbert, kcc, srhines, eugenis, llvm-commits, kubabrecka
Differential Revision: http://reviews.llvm.org/D21083
llvm-svn: 272553
In short, CVE-2016-2143 will crash the machine if a process uses both >4TB
virtual addresses and fork(). ASan, TSan, and MSan will, by necessity, map
a sizable chunk of virtual address space, which is much larger than 4TB.
Even worse, sanitizers will always use fork() for llvm-symbolizer when a bug
is detected. Disable all three by aborting on process initialization if
the running kernel version is not known to contain a fix.
Unfortunately, there's no reliable way to detect the fix without crashing
the kernel. So, we rely on whitelisting - I've included a list of upstream
kernel versions that will work. In case someone uses a distribution kernel
or applied the fix themselves, an override switch is also included.
Differential Revision: http://reviews.llvm.org/D18915
llvm-svn: 266297
Summary:
Android doesn't intercept sigfillset, so REAL(sigfillset) is null.
And we can use internal_sigfillset() for all cases.
Reviewers: kcc, eugenis, kubabrecka, dvyukov
Subscribers: llvm-commits, tberghammer, danalbert
Differential Revision: http://reviews.llvm.org/D15296
llvm-svn: 257862
This patch is by Simone Atzeni with portions by Adhemerval Zanella.
This contains the LLVM patches to enable the thread sanitizer for
PPC64, both big- and little-endian. Two different virtual memory
sizes are supported: Old kernels use a 44-bit address space, while
newer kernels require a 46-bit address space.
There are two companion patches that will be added shortly. There is
a Clang patch to actually turn on the use of the thread sanitizer for
PPC64. There is also a patch that I wrote to provide interceptor
support for setjmp/longjmp on PPC64.
Patch discussion at reviews.llvm.org/D12841.
llvm-svn: 255057
This patch enabled TSAN for aarch64 with 39-bit VMA layout. As defined by
tsan_platform.h the layout used is:
0000 4000 00 - 0200 0000 00: main binary
2000 0000 00 - 4000 0000 00: shadow memory
4000 0000 00 - 5000 0000 00: metainfo
5000 0000 00 - 6000 0000 00: -
6000 0000 00 - 6200 0000 00: traces
6200 0000 00 - 7d00 0000 00: -
7d00 0000 00 - 7e00 0000 00: heap
7e00 0000 00 - 7fff ffff ff: modules and main thread stack
Which gives it about 8GB for main binary, 4GB for heap and 8GB for
modules and main thread stack.
Most of tests are passing, with the exception of:
* ignore_lib0, ignore_lib1, ignore_lib3 due a kernel limitation for
no support to make mmap page non-executable.
* longjmp tests due missing specialized assembly routines.
These tests are xfail for now.
The only tsan issue still showing is:
rtl/TsanRtlTest/Posix.ThreadLocalAccesses
Which still required further investigation. The test is disable for
aarch64 for now.
llvm-svn: 244055
The ASanified executable could be launched from different locations. When we
cannot find the suppression file relative to the current directory, try to
see if the specified path is relative to the location of the executable.
llvm-svn: 230723
Also rename internal_sigaction() into internal_sigaction_norestorer(), as this function doesn't fully
implement the sigaction() functionality on Linux.
This change is a part of refactoring intended to have common signal handling behavior in all tools.
llvm-svn: 200535