The change to SemaTemplateVariadic.cpp improves the typo correction
results in certain situations, while the change to SemaTemplate.cpp
does not change existing behavior.
llvm-svn: 148155
Microsoft __if_exists/__if_not_exists statement. Also note that we
weren't traversing DeclarationNameInfo *at all* within the
RecursiveASTVisitor, which would be rather fatal for variadic
templates.
llvm-svn: 142906
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
SubstTemplateTypeParmType to be 'getIdentifier' instead of 'getName' as
it returns an identifier. This makes them more consistent with the
NamedDecl interface.
Also, switch back to using this interface to acquire the indentifier in
TypePrinter.cpp. I missed this in r130628.
llvm-svn: 130629
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
llvm-svn: 124072
together. In particular:
- Handle the use of captured parameter pack names within blocks
(BlockDeclRefExpr understands parameter packs now)
- Handle the declaration and expansion of parameter packs within a block's
parameter list, e.g., ^(Args ...args) { ... })
- Handle instantiation of blocks where the return type was not
explicitly specified. (unrelated, but necessary for my tests).
Together, these fixes should make blocks and variadic templates work
reasonably well together. Note that BlockDeclRefExpr is still broken
w.r.t. its computation of type and value dependence, which will still
cause problems for blocks in templates.
llvm-svn: 123849
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
involve template parameter packs at multiple template levels that
occur within the signatures members of class templates (and partial
specializations thereof). This is a work-in-progress that is deficient
in several ways, notably:
- It only works for template type parameter packs, but we need to
also support non-type template parameter packs and template template
parameter packs.
- It doesn't keep track of the lengths of the substituted argument
packs in the expansion, so it can't properly diagnose length
mismatches.
However, this is a concrete step in the right direction.
llvm-svn: 123425
another pack expansion type. This can happen when rebuilding types in
the current instantiation.
Fixes <rdar://problem/8848837> (Clang crashing on libc++ <functional>).
llvm-svn: 123316
parameters it expanded to, map exactly the number of function
parameters that were expanded rather than just running to the end of
the instantiated parameter list. This finishes the implementation of
the last sentence of C++0x [temp.deduct.call]p1.
llvm-svn: 123213
allows an argument pack determines via explicit specification of
function template arguments to be extended by further, deduced
arguments. For example:
template<class ... Types> void f(Types ... values);
void g() {
f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int
}
There are a number of FIXMEs in here that indicate places where we
need to implement + test retained expansions, plus a number of other
places in deduction where we need to correctly cope with the
explicitly-specified arguments when deducing an argument
pack. Furthermore, it appears that the RecursiveASTVisitor needs to be
auditied; it's missing some traversals (especially w.r.t. template
arguments) that cause it not to find unexpanded parameter packs when
it should.
The good news, however, is that the tr1::tuple implementation now
works fully, and the tr1::bind example (both from N2080) is actually
working now.
llvm-svn: 123163
parameter packs, along with ParmVarDecl::isParameterPack(), which
looks for function parameter packs. Use these routines to fix some
obvious FIXMEs.
llvm-svn: 122904
for template template argument pack expansions. This allows fun such
as:
template<template<class> class ...> struct apply_impl { /*...*/ };
template<template<class> class ...Metafunctions> struct apply {
typedef typename apply_impl<Metafunctions...>::type type;
};
However, neither template argument deduction nor template
instantiation is implemented for template template argument packs, so
this functionality isn't useful yet.
I'll probably replace the encoding of template template
argument pack expansions in TemplateArgument so that it's harder to
accidentally forget about the expansion. However, this is a step in
the right general direction.
llvm-svn: 122890
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
extract the appropriate argument from the argument pack (based on the
current substitution index, of course). Simple instantiation of pack
expansions involving non-type template parameter packs now works.
llvm-svn: 122532
packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
pattern is a template argument, which involves repeatedly deducing
template arguments using the pattern of the pack expansion, then
bundling the resulting deductions into an argument pack.
We can now handle a variety of simple list-handling metaprograms using
variadic templates. See, e.g., the new "count" metaprogram.
llvm-svn: 122439
shouldWalkTypesOfTypeLocs() that determines whether it should walk the
Types within TypeLocs. This walk is redundant, but perhaps required
for some clients. Disabling this redundant walk in the unexpanded
parameter pack finder produces better results, because we get
parameter packs with source location info *unless* such source
location information isn't available.
llvm-svn: 122287
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
parameter packs within a statement, type, etc. Use this visitor to
provide improved diagnostics for the presence of unexpanded parameter
packs in a full expression, base type, declaration type, etc., by
highlighting the unexpanded parameter packs and providing their names,
e.g.,
test/CXX/temp/temp.decls/temp.variadic/p5.cpp:28:85: error: declaration type
contains unexpanded parameter packs 'VeryInnerTypes',
'OuterTypes', ...
...VeryInnerTypes, OuterTypes>, pair<InnerTypes, OuterTypes> > types;
~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ^
llvm-svn: 121883