LLD is a multi-threaded program. errs() or outs() are not guaranteed
to be thread-safe (they are actually not).
LLD's message(), log() or error() are thread-safe. We should use them.
llvm-svn: 295787
This patch removes NeedsCopyOrPltAddr and instead add two variables,
NeedsCopy and NeedsPltAddr. This uses one more bit in Symbol class,
but the actual size doesn't increase because we had unused bits.
This should improve code readability.
llvm-svn: 295287
In the target dependent code we already always return a int64_t. In
the target independent code we carefully use uintX_t, which has the
same result given 2 complement rules.
This just simplifies the code to use int64_t everywhere.
llvm-svn: 295263
When we need a copy relocation we create a synthetic SHT_NOBITS
section that contains the right amount of ZI and assign it to either
.bss or .rel.ro.bss as appropriate. This allows the dynamic relocation
to be placed on the InputSection, removing the last case where a
dynamic relocation is stored as an offset from the OutputSection. This
has the side effect that we can run assignOffsets() after scanRelocs()
without losing the additional ZI needed for the copy relocations.
Differential Revision: https://reviews.llvm.org/D29637
llvm-svn: 294577
With a synthetic merge section we can have, for example, a single
.rodata section with stings, fixed sized constants and non merge
constants.
I can be simplified further by not setting Entsize, but that is
probably better done is a followup patch.
This should allow some cleanup in the linker script code now that
every output section command maps to just one output section.
llvm-svn: 294005
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
This is a recommit of r293283 with a fixed comparison predicate as
std::merge requires a strict weak ordering.
Differential revision: https://reviews.llvm.org/D29327
llvm-svn: 293757
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
Differential Revision: https://reviews.llvm.org/D29129
llvm-svn: 293283
Currently ld.lld -r allocates space for common symbols, whereas ld.bfd
-r doesn't. As a result the OpenBSD makefile bits for creating libraries
fail as they use ld -X -r to strip local symbols, which results in
duplicate symbol errors because space for the common symbols has been
allocated.
The diff also implements the --define-commons option such that allocation
of commons can be forced even if -r is used.
Patch by Mark Kettenis.
llvm-svn: 292878
LLD exports symbols that are also present in used shared libraries to
make sure they are preempted at runtime. That is a reasonable default,
but we must allow for it to be overwritten with linker script. If we
don't, libraries that expect to be able to hide a c++ delete operator
will fail.
This should fix the firebird build.
llvm-svn: 292146
When reserving copy relocation space for a shared symbol, scan the DSO's
program headers to see if the symbol is in a read-only segment. If so,
reserve space for that symbol in a new synthetic section named .bss.rel.ro
which will be covered by the relro program header.
This fixes the security issue disclosed on the binutils mailing list at:
https://sourceware.org/ml/libc-alpha/2016-12/msg00914.html
Differential Revision: https://reviews.llvm.org/D28272
llvm-svn: 291524
In a shared library an undefined symbol is implicitly imported. If the
symbol is called as a function a PLT entry is generated for it. When the
caller is a Thumb b.w a thunk to the PLT entry is needed as all PLT
entries are in ARM state.
This change allows undefined symbols to have thunks in the same way that
shared symbols may have thunks.
llvm-svn: 290951
DefinedSynthetic is not created for a real ELF object, so it doesn't
have to be a template function. It has a virtual st_value, which is
either 32 bit or 64 bit, but we can simply use 64 bit.
llvm-svn: 290241
`SC` didn't make much sense. We don't seem to have a clear convention,
but `IS` sounds good here because it emphasizes that it is an input
section (this is one place in the code where we are dealing with both
input sections and output sections at the same time so that extra
emphasis makes it a bit clearer).
llvm-svn: 289748
This change introduces new synthetic sections IpltSection, IgotPltSection
that represent the ifunc entries that would previously have been put in
the PltSection and the GotPltSection. The separation makes sure that
the R_*_IRELATIVE relocations are placed after the non R_*_IRELATIVE
relocations, which permits ifunc resolvers to know that the .got.plt
slots will be initialized prior to the resolver being called.
A secondary benefit is that for ARM we can move the IgotPltSection and its
dynamic relocations to the .got and .rel.dyn as the ARM glibc expects all
the R_*_IRELATIVE relocations to be in the .rel.dyn
Differential revision: https://reviews.llvm.org/D27406
llvm-svn: 289045
StringRefZ is a class to represent a null-terminated string. String
length is computed lazily, so it's more efficient than StringRef to
represent strings in string table.
The motivation of defining this new class is to merge functions
that only differ in string types; we have many constructors that takes
`const char *` or `StringRef`. With StringRefZ, we can merge them.
Differential Revision: https://reviews.llvm.org/D27037
llvm-svn: 288172
We have different functions to stringize objects to construct
error messages. For InputFile, we have getFilename, and for
InputSection, we have getName. You had to memorize them.
I think this is the case where the function overloading comes in handy.
This patch defines toString() functions that are overloaded for all these
types, so that you just call it in error().
Differential Revision: https://reviews.llvm.org/D27030
llvm-svn: 287787
There are two ways to set symbol versions. One way is to use symbol
definition file, and the other is to embed version names to symbol
names. In the latter way, symbol name is in the form of `foo@version1`
where `foo` is a real name and `version1` is a version.
We were parsing symbol names in insert(). That seems unnecessarily
too early. We can do it later after we resolve all symbols. Doing it
lazily is a good thing because it makes code easier to read
(because now we have a separate pass to parse symbol names). Also
it could slightly improve performance because if two identical symbols
have versions, we now parse them only once.
llvm-svn: 287741
Previously, we stored offsets in string tables to symbols, so
you needed to pass a string table to get a symbol name. This patch
stores const char pointers instead to eliminate the need to pass
a string table.
llvm-svn: 287737
Patch allows to pass a symbols file to linker.
LLD will map symbols to sections and sort sections
in output according to symbol ordering file.
That can help to reduce the startup time and/or
amount of pagefaults during startup.
Also, interesting benchmark result was produced by Rafael Espíndola.
After applying the symbols file for clang he timed compiling
X86MCTargetDesc.ii to an object file.
The page faults went from just
56,988 to 56,946 since most faults are not in the binary.
Running time went from 4.403053515 to 4.178112244.
The speedup seems to be because of better cache
locality.
Differential revision: https://reviews.llvm.org/D26130
llvm-svn: 286440
The disadvantage is that we use uint64_t instad of uint32_t for some
value in 32 bit files. The advantage is a substantially simpler code,
faster builds and less code duplication.
llvm-svn: 286414
This is similar to what was done for InputSection.
With this the various fields are stored in host order and only
converted to target order when writing.
llvm-svn: 286327
A CommonInputSection is a section containing all common symbols.
That was an input section but was abstracted in a different way
than the synthetic input sections because it was written before
the synthetic input section was invented.
This patch rewrites CommonInputSection as a synthetic input section
so that it behaves better with other sections.
llvm-svn: 286053
Previously, we have a lot of BumpPtrAllocators, but all these
allocators virtually have the same lifetime because they are
not freed until the linker finishes its job. This patch aggregates
them into a single allocator.
Differential revision: https://reviews.llvm.org/D26042
llvm-svn: 285452
We used to have one allocator per file, which reduces the advantage of
using an allocator in the first place.
This is a small speed up is most cases. The largest speedup was in
1.014X in chromium no-gc. The largest slowdown was scylla at 1.003X.
llvm-svn: 285205
Instead of storing a pointer, store the members we need.
The reason for doing this is that it makes it far easier to create
synthetic sections. It also avoids reading data from files multiple
times., which might help with cross endian linking and host
architectures with slow unaligned access.
There are obvious compacting opportunities, but this already has mixed
results even on native x86_64 linking.
There is also the possibility of better refactoring the code for
handling common symbols, but this already shows that a custom class is
not necessary.
llvm-svn: 285148
Some MIPS relocations used to access GOT entries are able to manipulate
16-bit index. The other ones like R_MIPS_CALL_HI16/LO16 can handle
32-bit indexes. 16-bit relocations are generated by default. The 32-bit
relocations are generated by -mxgot flag passed to compiler. Usually
these relocation are not mixed in the same code but files like crt*.o
contain 16-bit relocations so even if all "user's" code compiled with
-mxgot flag a few 16-bit relocations might come to the linking phase.
Now LLD does not differentiate local GOT entries accessed via a 16-bit
and 32-bit indexes. That might lead to relocation's overflow if 16-bit
entries are allocated to far from the beginning of the GOT.
The patch introduces new "part" of MIPS GOT dedicated to the local GOT
entries accessed by 32-bit relocations. That allows to put local GOT
entries accessed via a 16-bit index first and escape relocation's overflow.
Differential revision: https://reviews.llvm.org/D25833
llvm-svn: 284809
r283984 introduced a problem of too many warning messages being shown
when -ffunction-sections and -fdata-sections were used in conjunction
with --gc-sections linker flag and debugging information present. This
happens because lot of relocations from .debug_line section may become
invalid in such case. The newer fix doesn't show any warning message but
zeroes OutSec pointer in createInputSectionList() to avoid crash, when
relocations are written
llvm-svn: 284010
id_000021,sig_11,src_000002,op_flip1,pos_92 from PR30540
does not have TLS sections, but type
of one of the symbol is broken and set to STT_TLS,
what resulted in a crash. Patch fixes crash.
DIfferential revision: https://reviews.llvm.org/D25083
llvm-svn: 283198
In case of linking PIC and non-PIC code together and generation of a
relocatable object, all PIC symbols should have STO_MIPS_PIC flag in the
symbol table of the ouput file.
llvm-svn: 282714
Previously, all input files were owned by the symbol table.
Files were created at various places, such as the Driver, the lazy
symbols, or the bitcode compiler, and the ownership of new files
was transferred to the symbol table using std::unique_ptr.
All input files were then free'd when the symbol table is freed
which is on program exit.
I think we don't have to transfer ownership just to free all
instance at once on exit.
In this patch, all instances are automatically collected to a
vector and freed on exit. In this way, we no longer have to
use std::unique_ptr.
Differential Revision: https://reviews.llvm.org/D24493
llvm-svn: 281425
r275711 for "speedng up symbol version handling" was committed
by misunderstanding; the benchmark number was measured with
a debug build. The number with a release build didn't actually change.
This patch removes false optimizations added in that patch.
llvm-svn: 276267
In the last patch for --trace-symbol, I introduced a new symbol type
PlaceholderKind and store it to SymVector storage. It made all code
that iterates over SymVector to recognize and skip PlaceholderKind
symbols. I found that that's annoying.
In this patch, I removed PlaceholderKind and stop storing them to SymVector.
Now the information whether a symbol is being watched by --trace-symbol
is stored to the Symtab hash table.
llvm-svn: 275747
--trace-symbol is a command line option to watch a symbol.
Previosly, we looked up a hash table for a new symbol if the
option is given. Any code that looks up a hash table for each
symbol is expensive because the linker handles a lot of symbols.
In our design, we look up a hash table strictly only once
for a symbol, so --trace-symbol was an exception.
This patch improves efficiency of the option by merging the
hash table into the symbol table.
Instead of looking up a separate hash table with a string,
this patch sets `Traced` flag to symbols specified by --trace-symbol.
So, if you insert a symbol and get a symbol with `Traced` flag on,
you know that you need to print out a log message for the symbol.
This is nearly zero cost.
llvm-svn: 275716
Versions can be assigned to symbols in two different ways.
One is the usual version scripts, and the other is special
symbol suffix '@'. If a symbol contains '@', the string after
that is considered to specify a version name.
Previously, we look for '@' for all symbols.
Anything that works on every symbol can be expensive because
the linker has to handle a lot of symbols. The search for '@'
was not an exception.
In this patch, I made two optimizations.
The first optimization is to handle '@' only when at least one
version is defined. If no versions are defined, no versions can
be assigned to any symbols, so it's waste of time to search for '@'.
The second optimization is to scan only suffixes of symbol names
instead of entire symbol names. Symbol names can be very long, but
symbol versions are usually short, so scanning entire symbol names
is waste of time, too.
There are some error cases which we no longer be able to detect
with this patch. I don't think it's a major drawback because they
are minor errors. Speed is more important.
This change improves LLD with debug info self-link time from
6.6993 seconds to 6.3426 seconds (or -5.3%).
Differential Revision: https://reviews.llvm.org/D22433
llvm-svn: 275711
Previously, each subclass of SymbolBody had a pointer to a source
file from which it was created. So, there was no single way to get
a source file for a symbol. We had getSourceFile<ELFT>(), but the
function was a bit inconvenient as it's a template.
This patch makes SymbolBody have a pointer to a source file.
If a symbol is not created from a file, the pointer has a nullptr.
llvm-svn: 275701
Patch by H.J Lu.
For x86-64 psABI, the entry size of .got and .got.plt sections is 8
bytes for both LP64 and ILP32. Add GotEntrySize and GotPltEntrySize
to ELF target instead of using size of ELFT::uint. Now we can generate
a simple working x32 executable.
Differential Revision: http://reviews.llvm.org/D22288
llvm-svn: 275301
The TinyPtrVector of const Thunk<ELFT>* in InputSections.h can cause
build failures on certain compiler/library combinations when Thunk<ELFT>
is not a complete type or is an abstract class. Fixed by making Thunk<ELFT>
non Abstract.
type or is an abstract class
llvm-svn: 274863
Generalise the Mips LA25 Thunk code and implement ARM and Thumb
interworking Thunks.
- Introduce a new module Thunks.cpp to store the Target Specific Thunk
implementations.
- DefinedRegular and Shared have a ThunkData field to record Thunk.
- A Target can have more than one type of Thunk.
- Support PC-relative calls to Thunks.
- Support Thunks to PLT entries.
- Existing Mips LA25 Thunk code integrated.
- Support for ARMv7A interworking Thunks.
Limitations:
- Only one Thunk per SymbolBody, this is sufficient for all currently
implemented Thunks.
- ARM thunks assume presence of V6T2 MOVT and MOVW instructions.
Differential revision: http://reviews.llvm.org/D21891
llvm-svn: 274836
Symbols.cpp contains functions to handle ELF symbols.
demangle() function is essentially a function to work on a
string rather than on an ELF symbol. So Strings.cpp is a
better place to put that function.
This change also make demangle to demangle symbols unconditionally.
Previously, it demangled symbols only when Config->Demangle is true.
llvm-svn: 274804
t is possible to create new version of symbol instead of depricated one
using combination of version script and asm commands. For example:
__asm__(".symver b_1,b@LIBSAMPLE_1.0");
int b_1() { return 10; }
__asm__(".symver b_2,b@@LIBSAMPLE_2.0");
int b_2() { return 20; }
This code makes b_2() to be default implementation for b().
b_1() is used for compatibility with binaries compiled against
library of older version LIBSAMPLE_1.0.
This patch implements support for above functionality in lld.
Differential revision: http://reviews.llvm.org/D21681
llvm-svn: 274002
With fix:
-soname flag was not set in testcase. Hash calculated for base def was different on local
and bot machines because filename fos used for calculating.
Initial commit message:
Patch implements basic support of versioned symbols.
There is no wildcards patterns matching except local: *;
There is no support for hierarchies.
There is no support for symbols overrides (@ vs @@ not handled).
This patch allows programs that using simple scripts to link and run.
Differential revision: http://reviews.llvm.org/D21018
llvm-svn: 273152
Patch implements basic support of versioned symbols.
There is no wildcards patterns matching except local: *;
There is no support for hierarchies.
There is no support for symbols overrides (@ vs @@ not handled).
This patch allows programs that using simple scripts to link and run.
Differential revision: http://reviews.llvm.org/D21018
llvm-svn: 273143
There are two motivations for this patch. The first one is a preparation
for support MIPS TLS relocations. It might sound like a joke but for GOT
entries related to TLS relocations MIPS ABI uses almost regular approach
with creation of dynamic relocations for each GOT enty etc. But we need
to separate these 'regular' TLS related entries from MIPS specific local
and global parts of GOT. ABI declare simple solution - all TLS related
entries allocated at the end of GOT after local/global parts. The second
motivation it to support GOT relocations for non-preemptible symbols
with addends. If we have more than one GOT relocations against symbol S
with different addends we need to create GOT entries for each unique
Symbol/Addend pairs.
So we store all MIPS GOT entries in separate containers. For non-preemptible
symbols we have to maintain two data structures. The first one is MipsLocal
vector. Each entry corresponds to the GOT entry from the 'local' part
of the GOT contains the symbol's address plus addend. The second one
is MipsLocalMap. It is a map from Symbol/Addend pair to the GOT index.
Differential Revision: http://reviews.llvm.org/D21297
llvm-svn: 273127
PltZero (or PLT[0]) was an appropriate name for the little code
we have at beginning of the PLT section when we only supported x86
since the code for x86 just fits in the first PLT slot.
It's not the case anymore. The code for ARM64 occupies first two
slots, so PltZero spans PLT[0] and PLT[1], for example.
This patch renames it to avoid confusion.
llvm-svn: 272913
This should never happen with correct programs, but it is trivial
write a testcase where lld would crash or report duplicated
symbols. We now behave like when an archive is used and include the
file only once.
llvm-svn: 272724
We were creating the copy relocations just fine, but then thinking that
the .bss position could be preempted and creating a dynamic relocation
to it, which would crash at runtime since that memory is read only.
llvm-svn: 268668
Weak undefined symbols resolve to the image base. This is a little strange,
but it allows us to link function calls to such symbols. Normally such a
call will be guarded with a comparison, which will load a zero from the GOT.
There's one example of such a function call in crti.o in Linux's CRT.
As part of this change, I also needed to make the synthetic start and end
symbols image base relative in the case where their sections were empty,
so that PC-relative references to those symbols would continue to work.
Differential Revision: http://reviews.llvm.org/D19844
llvm-svn: 268350
This patch increases the size of Undefined by the size of a pointer,
but it wouldn't actually increase the size of memory that LLD uses
because we are not allocating the exact size but the size of the
largest SymbolBody.
llvm-svn: 268310
This patch implements a new design for the symbol table that stores
SymbolBodies within a memory region of the Symbol object. Symbols are mutated
by constructing SymbolBodies in place over existing SymbolBodies, rather
than by mutating pointers. As mentioned in the initial proposal [1], this
memory layout helps reduce the cache miss rate by improving memory locality.
Performance numbers:
old(s) new(s)
Without debug info:
chrome 7.178 6.432 (-11.5%)
LLVMgold.so 0.505 0.502 (-0.5%)
clang 0.954 0.827 (-15.4%)
llvm-as 0.052 0.045 (-15.5%)
With debug info:
scylla 5.695 5.613 (-1.5%)
clang 14.396 14.143 (-1.8%)
Performance counter results show that the fewer required indirections is
indeed the cause of the improved performance. For example, when linking
chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and
instructions per cycle increases from 0.78 to 0.83. We are also executing
many fewer instructions (15,516,401,933 down to 15,002,434,310), probably
because we spend less time allocating SymbolBodies.
The new mechanism by which symbols are added to the symbol table is by calling
add* functions on the SymbolTable.
In this patch, I handle local symbols by storing them inside "unparented"
SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating
these SymbolBodies, we can probably do that separately.
I also removed a few members from the SymbolBody class that were only being
used to pass information from the input file to the symbol table.
This patch implements the new design for the ELF linker only. I intend to
prepare a similar patch for the COFF linker.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html
Differential Revision: http://reviews.llvm.org/D19752
llvm-svn: 268178
There seems to be no reason to keep st_size of undefined symbols.
This patch removes the member for it. This patch will change outputs
in cases that undefined symbols are copied to output, but I think
this is unimportant.
Differential Revision: http://reviews.llvm.org/D19574
llvm-svn: 267826
The semantics of the -u flag are to load the lazy symbol named by the flag. We
were previously relying on this behavior falling out of symbol resolution
against a synthetic undefined symbol, but that didn't quite give us the
correct behavior, so we needed a flag to mark symbols created with -u so
we could treat them specially in the writer. However, it's simpler and less
error prone to implement the required behavior directly and remove the flag.
This fixes an issue where symbols loaded with -u would receive hidden
visibility even when the definition in an object file had wider visibility.
Differential Revision: http://reviews.llvm.org/D19560
llvm-svn: 267639
Fixes check-llvm when bootstrapping.
Also remove mostly dead and most likely incorrect logic regarding preemption
of weak undefined symbols.
llvm-svn: 267314
This patch only implements support for version scripts of the form:
{ [ global: symbol1; symbol2; [...]; symbolN; ] local: *; };
No wildcards are supported, other than for the local entry. Symbol versioning
is also not supported.
It works by introducing a new Symbol flag which tracks whether a symbol
appears in the global section of a version script.
This patch also simplifies the logic in SymbolBody::isPreemptible(), and
teaches it to handle the case where symbols with default visibility in DSOs
do not appear in the dynamic symbol table because of a version script.
Fixes PR27482.
Differential Revision: http://reviews.llvm.org/D19430
llvm-svn: 267208
These are properties of a symbol name, rather than a particular instance
of a symbol in an object file. We can simplify the code by collecting these
properties in Symbol.
The MustBeInDynSym flag has been renamed ExportDynamic, as its semantics
have been changed to be the same as those of --dynamic-list and
--export-dynamic-symbol, which do not cause hidden symbols to be exported.
Differential Revision: http://reviews.llvm.org/D19400
llvm-svn: 267183
Since there is a copy in every translation unit that uses them, they can
be omitted from the symbol table if the address is not significant.
This still doesn't catch as many cases as the gold plugin. The
difference is that we check canBeOmittedFromSymbolTable in each file and
use lazy loading which limits what it can do. Gold checks it in the merged file.
I think the correct way of getting the same results as gold is just to
cache in the IR the result of canBeOmittedFromSymbolTable.
llvm-svn: 267063
This simplifies the code by allowing us to remove the visibility argument
to functions that create synthetic symbols.
The only functional change is that the visibility of the MIPS "_gp" symbol
is now hidden. Because this symbol is defined in every executable or DSO, it
would be difficult to observe a visibility change here.
Differential Revision: http://reviews.llvm.org/D19033
llvm-svn: 266208
Now MustBeInDynSym is only true if the symbol really must be in the
dynamic symbol table.
IsUsedInRegularObj is only true if the symbol is used in a .o or -u. Not
a .so or a .bc.
A benefit is that this is now done almost entirilly during symbol
resolution. The only exception is copy relocations because of aliases.
This includes a small fix in that protected symbols in .so don't force
executable symbols to be exported.
This also opens the way for implementing internalize for -shared.
llvm-svn: 265826
start-lib and end-lib are options to link object files in the same
semantics as archive files. If an object is in start-lib and end-lib,
the object is linked only when the file is needed to resolve
undefined symbols. That means, if an object is in start-lib and end-lib,
it behaves as if it were in an archive file.
In this patch, I introduced a new notion, LazyObjectFile. That is
analogous to Archive file type, but that works for a single object
file instead of for an archive file.
http://reviews.llvm.org/D18814
llvm-svn: 265710
We have to differentiate undefined symbols from bitcode and undefined
symbols from other sources.
Undefined symbols from bitcode should not inhibit the symbol being
internalized. Undefined symbols from other sources should.
llvm-svn: 265536