These will be used for error propagation and handling in the ORC runtime.
The implementations of these types are cut-down versions of the error
support in llvm/Support/Error.h. Most advice on llvm::Error and llvm::Expected
(e.g. from the LLVM Programmer's manual) applies equally to __orc_rt::Error
and __orc_rt::Expected. The primary difference is the mechanism for testing
and handling error types: The ORC runtime uses a new 'error_cast' operation
to replace the handleErrors family of functions. See error_cast comments in
error.h.
If there are no counters, an mmap() of the counters section would fail
due to the size argument being too small (EINVAL).
rdar://78175925
Differential Revision: https://reviews.llvm.org/D102735
While developing a change to the allocator I ended up breaking
realloc on secondary allocations with increasing sizes. That didn't
cause any of the unit tests to fail, which indicated that we're
missing some test coverage here. Add a unit test for that case.
Differential Revision: https://reviews.llvm.org/D102716
This is a substitute for std::apply, which we can't use until we move to c++17.
apply_tuple will be used in upcoming the upcoming wrapper-function utils code.
Override __cxa_atexit and ignore callbacks.
This prevents crashes in a configuration when the symbolizer
is built into sanitizer runtime and consequently into the test process.
LLVM libraries have some global objects destroyed during exit,
so if the test process triggers any bugs after that, the symbolizer crashes.
An example stack trace of such crash:
For the standalone llvm-symbolizer this does not hurt,
we just don't destroy few global objects on exit.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D102470
Since we have both aliasing mode and Intel LAM on x86_64, we need to
choose the mode at either run time or compile time. This patch
implements the plumbing to build both and choose between them at
compile time.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D102286
On AIX, we have to ship `libatomic.a` for compatibility. First, a new `clang_rt.atomic` is added. Second, use added cmake modules for AIX, we are able to build a compatible libatomic.a for AIX. The second step can't be perfectly implemented with cmake now since AIX's archive approach is kinda unique, i.e., archiving shared libraries into a static archive file.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D102155
https://reviews.llvm.org/D101681 landed a change to check the testing
configuration which relies on using the `-print-runtime-dir` flag of
clang to determine where the runtime testing library is.
The patch treated not being able to find the path reported by clang
as an error. Unfortunately this seems to break the
`llvm-clang-win-x-aarch64` bot. Either the bot is misconfigured or
clang is reporting a bogus path.
To temporarily unbreak the bot downgrade the fatal error to a warning.
While we're here also print information about the command used to
determine the path to aid debugging.
to a warning.
https://reviews.llvm.org/D101681 introduced a check to make sure the
compiler and compiler-rt were using the same library path when
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS=ON`, i.e. the developer's
intention is to test the just built libs rather that shipped with the
compiler used for testing.
It seems this broken some bots that are likely misconfigured.
So to unbreak them, for now let's make this a warning so the bot
owners can investigate without breaking their builds.
The path to the runtime libraries used by the compiler under test
is normally identical to the path where just built libraries are
created. However, this is not necessarily the case when doing standalone
builds. This is because the external compiler used by tests may choose
to get its runtime libraries from somewhere else.
When doing standalone builds there are two types of testing we could be
doing:
* Test the just built runtime libraries.
* Test the runtime libraries shipped with the compile under test.
Both types of testing are valid but it confusingly turns out compiler-rt
actually did a mixture of these types of testing.
* The `test/builtins/Unit/` test suite always tested the just built runtime
libraries.
* All other testsuites implicitly use whatever runtime library the
compiler decides to link.
There is no way for us to infer which type of testing the developer
wants so this patch introduces a new
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` CMake
option which explicitly declares which runtime libraries should be
tested. If it is `ON` then the just built libraries should be tested,
otherwise the libraries in the external compiler should be tested.
When testing starts the lit test suite queries the compiler used for
testing to see where it will get its runtime libraries from. If these
paths are identical no action is taken (the common case). If the paths
are not identical then we check the value of
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` (progated into the config as
`test_standalone_build_libs`) and check if the test suite supports testing in the
requested configuration.
* If we want to test just built libs and the test suite supports it
(currently only `test/builtins/Unit`) then testing proceeds without any changes.
* If we want to test the just built libs and the test suite doesn't
support it we emit a fatal error to prevent the developer from
testing the wrong runtime libraries.
* If we are testing the compiler's built libs then we adjust
`config.compiler_rt_libdir` to point at the compiler's runtime
directory. This makes the `test/builtins/Unit` tests use the
compiler's builtin library. No other changes are required because
all other testsuites implicitly use the compiler's built libs.
To make the above work the
`test_suite_supports_overriding_runtime_lib_path` test suite config
option has been introduced so we can identify what each test suite
supports.
Note all of these checks **have to be performed** when lit runs.
We cannot run the checks at CMake generation time because
multi-configuration build systems prevent us from knowing what the
paths will be.
We could perhaps support `COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` being
`ON` for most test suites (when the runtime library paths differs) in
the future by specifiying a custom compiler resource directory path.
Doing so is out of scope for this patch.
rdar://77182297
Differential Revision: https://reviews.llvm.org/D101681
`-fno-exceptions -fno-asynchronous-unwind-tables` compiled programs don't
produce .eh_frame on Linux and other ELF platforms, so the slow unwinder cannot
print stack traces. Just fall back to the fast unwinder: this allows
-fno-asynchronous-unwind-tables without requiring the sanitizer option
`fast_unwind_on_fatal=1`
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D102046
This removes one of the last dependencies on old Scudo, and should allow
us to delete the old Scudo soon.
Reviewed By: vitalybuka, cryptoad
Differential Revision: https://reviews.llvm.org/D102349
-fsanitize-hwaddress-experimental-aliasing is intended to distinguish
aliasing mode from LAM mode on x86_64. check-hwasan is configured
to use aliasing mode while check-hwasan-lam is configured to use LAM
mode.
The current patch doesn't actually do anything differently in the two
modes. A subsequent patch will actually build the separate runtimes
and use them in each mode.
Currently LAM mode tests must be run in an emulator that
has LAM support. To ensure LAM mode isn't broken by future patches, I
will next set up a QEMU buildbot to run the HWASan tests in LAM.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102288
With zero-sized allocations we don't actually end up storing the
address tag to the memory tag space, so store it in the first byte of
the chunk instead so that we can find it later in getInlineErrorInfo().
Differential Revision: https://reviews.llvm.org/D102442
It's more likely that we have a UAF than an OOB in blocks that are
more than 1 block away from the fault address, so the UAF should
appear first in the error report.
Differential Revision: https://reviews.llvm.org/D102379
On x32 size_t == unsigned int, not unsigned long int:
../../../../../src-master/libsanitizer/sanitizer_common/sanitizer_linux_libcdep.cpp: In function ??void __sanitizer::InitTlsSize()??:
../../../../../src-master/libsanitizer/sanitizer_common/sanitizer_linux_libcdep.cpp:209:55: error: invalid conversion from ??__sanitizer::uptr*?? {aka ??long unsigned int*??} to ??size_t*?? {aka ??unsigned int*??} [-fpermissive]
209 | ((void (*)(size_t *, size_t *))get_tls_static_info)(&g_tls_size, &tls_align);
| ^~~~~~~~~~~
| |
| __sanitizer::uptr* {aka long unsigned int*}
by using size_t on g_tls_size. This is to fix:
https://bugs.llvm.org/show_bug.cgi?id=50332
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D102446
The bounds check that we previously had here was suitable for secondary
allocations but not for UAF on primary allocations, where it is likely
to result in false positives. Fix it by using a different bounds check
for UAF that requires the fault address to be in bounds.
Differential Revision: https://reviews.llvm.org/D102376
We have some significant amount of duplication around
CheckFailed functionality. Each sanitizer copy-pasted
a chunk of code. Some got random improvements like
dealing with recursive failures better. These improvements
could benefit all sanitizers, but they don't.
Deduplicate CheckFailed logic across sanitizers and let each
sanitizer only print the current stack trace.
I've tried to dedup stack printing as well,
but this got me into cmake hell. So let's keep this part
duplicated in each sanitizer for now.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102221
setlocale interceptor imitates a write into result,
which may be located in .rodata section.
This is the only interceptor that tries to do this and
I think the intention was to initialize the range for msan.
So do that instead. Writing into .rodata shouldn't happen
(without crashing later on the actual write) and this
traps on my local tsan experiments.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102161
Currently we have:
sanitizer_posix_libcdep.cpp:146:27: warning: cast between incompatible
function types from ‘__sighandler_t’ {aka ‘void (*)(int)’} to ‘sa_sigaction_t’
146 | sigact.sa_sigaction = (sa_sigaction_t)SIG_DFL;
We don't set SA_SIGINFO, so we need to assign to sa_handler.
And SIG_DFL is meant for sa_handler, so this gets rid of both
compiler warning, type cast and potential runtime misbehavior.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102162
We already declare subset of annotations in test.h.
But some are duplicated and declared in tests.
Move all annotation declarations to test.h.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102152
Add a simple test that uses syscall annotations.
Just to ensure at least basic functionality works.
Also factor out annotated syscall wrappers into a separate
header file as they may be useful for future tests.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102223
This test has two modes - testing reused threads with multiple loops of
batch create/join, and testing new threads with a single loop of
create/join per fork.
The non-reuse variant catches the problem that was fixed in D101881 with
a high probability.
Differential Revision: https://reviews.llvm.org/D101936