On the x86-64 and thumb2 targets, some registers are more expensive to encode
than others in the same register class.
Add a CostPerUse field to the TableGen register description, and make it
available from TRI->getCostPerUse. This represents the cost of a REX prefix or a
32-bit instruction encoding required by choosing a high register.
Teach the greedy register allocator to prefer cheap registers for busy live
ranges (as indicated by spill weight).
llvm-svn: 129864
Live range splitting can create a number of small live ranges containing only a
single real use. Spill these small live ranges along with the large range they
are connected to with copies. This enables memory operand folding and maximizes
the spill to fill distance.
Work in progress with known bugs.
llvm-svn: 127529
This is based on the observation that long live ranges are more difficult to
allocate, so there is a better chance of solving the puzzle by handling the big
pieces first. The allocator will evict and split long alive ranges when they get
in the way.
RABasic is still using spill weights for its priority queue, so the interface to
the queue has been virtualized.
llvm-svn: 126259
The rewriter works almost identically to -rewriter=trivial, except it also
eliminates any identity copies.
This makes the new register allocators independent of VirtRegRewriter.cpp which
will be going away at the same time as RegAllocLinearScan.
llvm-svn: 125967
Registers are not allocated strictly in spill weight order when live range
splitting and spilling has created new shorter intervals with higher spill
weights.
When one of the new heavy intervals conflicts with a single lighter interval,
simply evict the old interval instead of trying to split the heavy one.
The lighter interval is a better candidate for splitting, it has a smaller use
density.
llvm-svn: 125151
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
llvm-svn: 122113
abstract priority queue interface in subclasses that want to override the
priority calculations.
Subclasses must provide a getPriority() implementation instead.
This approach requires less code as long as priorities are expressable as simple
floats, and it avoids the dangers of defining potentially expensive priority
comparison functions.
It also should speed up priority_queue operations since they no longer have to
chase pointers when comparing registers. This is not measurable, though.
Preferably, we shouldn't use floats to guide code generation. The use of floats
here is derived from the use of floats for spill weights. Spill weights have a
dynamic range that doesn't lend itself easily to a fixpoint implementation.
When someone invents a stable spill weight representation, it can be reused for
allocation priorities.
llvm-svn: 121294
in favor of the widespread llvm style. Capitalize variables and add
newlines for visual parsing. Rename variables for readability.
And other cleanup.
llvm-svn: 120490
it makes no sense for allocation_order iterators to visit reserved regs.
The inline spiller depends on AliasAnalysis.
Manage the Query state to avoid uninitialized or stale results.
llvm-svn: 118800
benchmarks hitting an assertion.
Adds LiveIntervalUnion::collectInterferingVRegs.
Fixes "late spilling" by checking for any unspillable live vregs among
all physReg aliases.
llvm-svn: 118701
handle cases in which a register is unavailable for spill code.
Adds LiveIntervalUnion::extract. While processing interferences on a
live virtual register, reuses the same Query object for each
physcial reg.
llvm-svn: 118423
framework. It's purpose is not to improve register allocation per se,
but to make it easier to develop powerful live range splitting. I call
it the basic allocator because it is as simple as a global allocator
can be but provides the building blocks for sophisticated register
allocation with live range splitting.
A minimal implementation is provided that trivially spills whenever it
runs out of registers. I'm checking in now to get high-level design
and style feedback. I've only done minimal testing. The next step is
implementing a "greedy" allocation algorithm that does some register
reassignment and makes better splitting decisions.
llvm-svn: 117174