Don't replace shifts greater than the type with the maximum shift.
This isn't hit anywhere in the tests, and somewhere else is replacing
these with undef.
llvm-svn: 207000
Summary:
This documents the usage of sample profilers with Clang and the
profile format expected by LLVM's optimizers. It also documents the
profile conversion tool used by Linux Perf.
Reviewers: doug.gregor
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D3402
llvm-svn: 206994
Summary:
Add new 'let' command to bind arbitrary values into constants.
These constants can then be used in the matcher expressions.
Reviewers: pcc
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D3383
llvm-svn: 206984
The original messages were:
"Driver: Honor %INCLUDE% when built with MinGW"
"Add missing test triples"
The test was still failing on OS X.
llvm-svn: 206973
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
This implements the core functionality necessary to remove an edge from
the call graph and correctly update both the basic graph and the SCC
structure. As part of that it has to run a tiny (in number of nodes)
Tarjan-style DFS walk of an SCC being mutated to compute newly formed
SCCs, etc.
This is *very rough* and a WIP. I have a bunch of FIXMEs for code
cleanup that will reduce the boilerplate in this change substantially.
I also have a bunch of simplifications to various parts of both
algorithms that I want to make, but first I'd like to have a more
holistic picture. Ideally, I'd also like more testing. I'll probably add
quite a few more unit tests as I go here to cover the various different
aspects and corner cases of removing edges from the graph.
Still, this is, so far, successfully updating the SCC graph in-place
without disrupting the identity established for the existing SCCs even
when we do challenging things like delete the critical edge that made an
SCC cycle at all and have to reform things as a tree of smaller SCCs.
Getting this to work is really critical for the new pass manager as it
is going to associate significant state with the SCC instance and needs
it to be stable. That is also the motivation behind the return of the
newly formed SCCs. Eventually, I'll wire this all the way up to the
public API so that the pass manager can use it to correctly re-enqueue
newly formed SCCs into a fresh postorder traversal.
llvm-svn: 206968
up the stack finishing the exploration of each entries children before
we're finished in addition to accounting for their low-links. Added
a unittest that really hammers home the need for this with interlocking
cycles that would each appear distinct otherwise and crash or compute
the wrong result. As part of this, nuke a stale fixme and bring the rest
of the implementation still more closely in line with the original
algorithm.
llvm-svn: 206966
parents of an SCC, and add a lookup method for finding the SCC for
a given function. These aren't used yet, but will be used shortly in
some unit tests I'm adding and are really part of the broader intended
interface for the analysis.
llvm-svn: 206959
This model is not final and work is still in progress.
However there are substantial improvements on integer tests mainly because of better RAL with new scheduler.
Differential Revision: http://reviews.llvm.org/D3451
llvm-svn: 206957