This will prevent doubling of line endings when parsing assembly and
emitting assembly.
Otherwise we'd parse the directive, consume the end of statement, hit
the next end of statement, and emit a fresh newline.
llvm-svn: 315943
Previously these instructions were marked codegen only and had
an under-specified instruction description that did not record the
fcc register.
Reviewers: atanasyan, abeserminji
Differential Revision: https://reviews.llvm.org/D38847
llvm-svn: 315905
- Do not allow amd_amdgpu_isa directives on non-amdgcn architectures
- Do not allow amd_amdgpu_hsa_metadata on non-amdhsa OSes
- Do not allow amd_amdgpu_pal_metadata on non-amdpal OSes
Differential Revision: https://reviews.llvm.org/D38750
llvm-svn: 315812
- Emit NT_AMD_AMDGPU_ISA
- Add assembler parsing for isa version directive
- If isa version directive does not match command line arguments, then return error
Differential Revision: https://reviews.llvm.org/D38748
llvm-svn: 315808
- Move PAL metadata definitions to AMDGPUMetadata
- Make naming consistent with HSA metadata
Differential Revision: https://reviews.llvm.org/D38745
llvm-svn: 315523
- Rename AMDGPUCodeObjectMetadata to AMDGPUMetadata (PAL metadata will be included in this file in the follow up change)
- Rename AMDGPUCodeObjectMetadataStreamer to AMDGPUHSAMetadataStreamer
- Introduce HSAMD namespace
- Other minor name changes in function and test names
llvm-svn: 315522
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
Add instruction definitions for FP32 mode for recip.d and rsqrt.d.
Previously these instructions were only defined when targeting the
full 64-bit FPU model but were not guarded properly.
Reviewers: nitesh.jain, atanasyan
Differential Revision: https://reviews.llvm.org/D38400
llvm-svn: 315318
Previously, the parsing of the 'subu $reg, ($reg,) imm' relied on a parser
which also rendered the operand to the instruction. In some cases the
general parser could construct an MCExpr which was not a MCConstantExpr
which MipsAsmParser was expecting.
Address this by altering the special handling to cope with unexpected inputs
and fine-tune the handling of cases where an register name that is not
available in the current ABI is regarded as not a match for the custom parser
but also not as an outright error.
Also enforces the binutils restriction that only constants are accepted.
This partially resolves PR34391.
Thanks to Ed Maste for reporting the issue!
Reviewers: nitesh.jain, arichardson
Differential Revision: https://reviews.llvm.org/D37476
llvm-svn: 315310
Previously, the code that implemented the GNU assembler aliases for the
LDRD and STRD instructions (where the second register is omitted)
assumed that the input was a valid instruction. This caused assertion
failures for every example in ldrd-strd-gnu-bad-inst.s.
This improves this code so that it bails out if the instruction is not
in the expected format, the check bails out, and the asm parser is run
on the unmodified instruction.
It also relaxes the alias on thumb targets, so that unaligned pairs of
registers can be used. The restriction that Rt must be even-numbered
only applies to the ARM versions of these instructions.
Differential revision: https://reviews.llvm.org/D36732
llvm-svn: 315305
This adds diagnostic strings for the ARM floating-point register
classes, which will be used when these classes are expected by the
assembler, but the provided operand is not valid.
One of these, DPR, requires C++ code to select the correct error
message, as that class contains different registers depending on the
FPU. The rest can all have their diagnostic strings stored in the
tablegen decription of them.
Differential revision: https://reviews.llvm.org/D36693
llvm-svn: 315304
This adds diagnostic strings for the ARM general-purpose register
classes, which will be used when these classes are expected by the
assembler, but the provided operand is not valid.
One of these, rGPR, requires C++ code to select the correct error
message, as that class contains different registers in pre-v8 and v8
targets. The rest can all have their diagnostic strings stored in the
tablegen description of them.
Differential revision: https://reviews.llvm.org/D36692
llvm-svn: 315303
This allows a DiagnosticType and/or DiagnosticString to be associated
with a RegisterClass in tablegen, so that we can emit diagnostics in the
assembler when a register operand is incorrect.
DiagnosticType creates a predictable enum value, which gets returned as
the error code when an operand does not match, and can be used by the
assembly parser to map to a user-facing diagnostic. DiagnosticString
creates an anonymous enum value (currently based on the tablegen class
name), and a function to map from enum values to strings will be
generated. Both of these work the same was as they do for AsmOperand.
This isn't used by any targets yet, but has one (positive) side-effect.
It improves the diagnostic codes returned by validateOperandClass - we
always want to emit the diagnostic that relates to the expected operand
class, but this wasn't always being done when the expected and actual
classes were completely different (token/register/custom). This causes a
few AArch64 diagnostics to be improved, as Match_InvalidOperand was
being returned instead of a specific diagnostic type.
Differential revision: https://reviews.llvm.org/D36691
llvm-svn: 315295
Removes two report_fatal_errors.
Implement this by removing EmitCFICommon, and do the checking in
getCurrentDwarfFrameInfo. Have the callers check for null before
dereferencing it.
llvm-svn: 315264
This makes the .seh_ directives slightly more usable from standalone
assembly files.
This removes a large number of report_fatal_errors and recovers from the
error by ignoring the directive.
llvm-svn: 315262
Summary:
This suppresses the generation of .Lcfi labels in our textual assembler.
It was annoying that this generated cascading .Lcfi labels:
llc foo.ll -o - | llvm-mc | llvm-mc
After three trips through MCAsmStreamer, we'd have three labels in the
output when none are necessary. We should only bother creating the
labels and frame data when making a real object file.
This supercedes D38605, which moved the entire .seh_ implementation into
MCObjectStreamer.
This has the advantage that we do more checking when emitting textual
assembly, as a minor efficiency cost. Outputting textual assembly is not
performance critical, so this shouldn't matter.
Reviewers: majnemer, MatzeB
Subscribers: qcolombet, nemanjai, javed.absar, eraman, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D38638
llvm-svn: 315259
Implement .set dspr2 directive with appropriate feature bits. This
directive is a counterpart of -mattr=dspr2 command line option with the
exception that it does not influence elf header flags.
Patch by Milos Stojanovic.
Differential Revision: https://reviews.llvm.org/D38537
llvm-svn: 314994
Previously, instructions that were defined to use the FGR64 register class
were associated with the Mips64 table which was incorrect.
Reviewers: nitesh.jain, atanasyan
Differential Revision: https://reviews.llvm.org/D38454
llvm-svn: 314976
Currently llvm-mc just hangs inside infinite loop
while trying to parse file which has ".section .с" inside,
where section name is non-english character.
Patch fixes the issue.
In this patch I also moved content of non-english-characters.s
to test/MC/AsmParser/Inputs folder so that non-english-characters.s
becomes a single testcase for all invalid inputs containing non-english
symbols. That is convinent because llvm-mc otherwise tries
to parse and tokenize the whole testcase file with tools invocations and
it is harder to isolate the issue.
Differential revision: https://reviews.llvm.org/D38545
llvm-svn: 314973
This adds diagnostics for invalid immediate operands to the MOVW and MOVT
instructions (ARM and Thumb).
Differential revision: https://reviews.llvm.org/D31879
llvm-svn: 314888
Currently, our diagnostics for assembly operands are not consistent.
Some start with (for example) "immediate operand must be ...",
and some with "operand must be an immediate ...". I think the latter
form is preferable for a few reasons:
* It's unambiguous that it is referring to the expected type of operand, not
the type the user provided. For example, the user could provide an register
operand, and get a message taking about an operand is if it is already an
immediate, just not in the accepted range.
* It allows us to have a consistent style once we add diagnostics for operands
that could take two forms, for example a label or pc-relative memory operand.
Differential revision: https://reviews.llvm.org/D36689
llvm-svn: 314887
I found that llvm-mc does not like non-english characters even in comments,
which it tries to tokenize.
Problem happens because of functions like isdigit(), isalnum() which takes
int argument and expects it is not negative.
But at the same time MCParser uses char* to store input buffer poiner, char has signed value,
so it is possible to pass negative value to one of functions from above and
that triggers an assert.
Testcase for demonstration is provided.
To fix the issue helper functions were introduced in StringExtras.h
Differential revision: https://reviews.llvm.org/D38461
llvm-svn: 314883
Summary:
For the amdpal OS type:
We write an AMDGPU_PAL_METADATA record in the .note section in the ELF
(or as an assembler directive). It contains key=value pairs of 32 bit
ints. It is a merge of metadata from codegen of the shaders, and
metadata provided by the frontend as _amdgpu_pal_metadata IR metadata.
Where both sources have a key=value with the same key, the two values
are ORed together.
This .note record is part of the amdpal ABI and will be documented in
docs/AMDGPUUsage.rst in a future commit.
Eventually the amdpal OS type will stop generating the .AMDGPU.config
section once the frontend has safely moved over to using the .note
records above instead of .AMDGPU.config.
Reviewers: arsenm, nhaehnle, dstuttard
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D37753
llvm-svn: 314829
This switches the ARM AsmParser to use assembly operand diagnostics from
tablegen, rather than a switch statement on the ARMMatchResultTy. It
moves the existing diagnostic strings to tablegen, but adds no new ones,
so this is NFC except for one diagnostic string that had an off-by-1 error
in the hand-written switch statement.
Differential revision: https://reviews.llvm.org/D31607
llvm-svn: 314804
tryParseRegister advances the lexer, so we need to take copies of the start and
end locations of the register operand before calling it.
Previously, the caret in the diagnostic pointer to the comma after the r0
operand in the test, rather than the start of the operand.
Differential revision: https://reviews.llvm.org/D31537
llvm-svn: 314799
This converts the ARM AsmParser to use the new assembly matcher error
reporting mechanism, which allows errors to be reported for multiple
instruction encodings when it is ambiguous which one the user intended
to use.
By itself this doesn't improve many error messages, because we don't have
diagnostic text for most operand types, but as we add that then this will allow
more of those diagnostic strings to be used when they are relevant.
Differential revision: https://reviews.llvm.org/D31530
llvm-svn: 314779
Summary:
Intel documentation shows the memory operand as the first operand. But we currently treat it as the second operand. Conceptually the order doesn't matter since it doesn't write memory. We have aliases to parse with the operands in either order and the isel matching is commutable.
For the register®ister form order does matter for the assembly parser. PR22995 was previously filed and fixed by changing the register®ister form from MRMSrcReg to MRMDestReg to match gas. Ideally the memory form should match by using MRMDestMem.
I believe this supercedes D38025 which was trying to switch the register®ister form back to pre-PR22995.
Reviewers: aymanmus, RKSimon, zvi
Reviewed By: aymanmus
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38120
llvm-svn: 314639
The test attempts to use -1 as carry-in for v_addc_*.
Before writing r314522, I did actually test this on real hardware,
and found that it doesn't work. So r314522 is correct in restricting
the carry-in operand: just remove those tests to make things pass
again.
llvm-svn: 314530
New instructions are added to AArch32 and AArch64 to aid
floating-point multiplication and addition of complex numbers, where
the complex numbers are packed in a vector register as a pair of
elements. The Imaginary part of the number is placed in the more
significant element, and the Real part of the number is placed in the
less significant element.
This patch adds assembler for the ARM target.
Differential Revision: https://reviews.llvm.org/D36789
llvm-svn: 314511
This patch disables codegen support for branch likely instructions to
address a potential bug. These branches were unselectable as
they had the same patterns as the normal branches but came after them
when ISel was concerned.
The branch likely instructions were marked as having no delay
slots when they have annulling delay slots. The delay slot filler
does not currently handle annulling delay slot branches, so this
would lead to wrong codegen if these branches were generated.
Reviewers: atanasyan, nitesh.jain
Differential Revision: https://reviews.llvm.org/D38169
llvm-svn: 314421
MS allows the following size directives: float/double and long as synonymous to dword/qword and dword, respectively.
Differential Revision: https://reviews.llvm.org/D37190
llvm-svn: 314410
%lo(), %hi(), and %pcrel_hi() are supported and test cases have been added to
ensure the appropriate fixups and relocations are generated. I've added an
instruction format field which is used in RISCVMCCodeEmitter to, for
instance, tell whether it should emit a lo12_i fixup or a lo12_s fixup
(RISC-V has two 12-bit immediate encodings depending on the instruction
type).
Differential Revision: https://reviews.llvm.org/D23568
llvm-svn: 314389
This patch adds new insn, "reg = be16/be32/be64 reg",
for bswap to little endian for big-endian target (bpfeb).
It also adds new insn for negation "reg = -reg".
Currently, for source code, e.g.,
b = -a
LLVM still prefers to generate:
b = 0 - a
But "reg = -reg" format can be used in assembly code.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 314376
Previously these were being included as both imports and
exports, with the import being satisfied by the export
(or some strong symbol) at runtime. However proved
unnecessary and actually complicated linking as it meant
there was not a 1-to-1 mapping between a wasm function
/global index and a linker symbol.
Differential Revision: https://reviews.llvm.org/D38246
llvm-svn: 314245
Fixed suboptimal encoding of instruction memory operand when assembler is used to select 32 bit fixup rather than 8 bit immediate for encoding memory offset value.
Differential Revision: https://reviews.llvm.org/D38117
llvm-svn: 314044