This patch adds a new kind of metadata that indicates the possible callees of
indirect calls.
Differential Revision: https://reviews.llvm.org/D37354
llvm-svn: 315944
static __global int Var = 0;
__global int* Ptr[] = {&Var};
...
In this case Var is a non premptable symbol and so its address can be used as the value of Ptr, with a base relative relocation that will add the delta between the ELF address and the actual load address. Such relocations do not require a symbol.
Differential Revision: https://reviews.llvm.org/D38909
llvm-svn: 315935
This patch adds the ability to perform IPSCCP-like interprocedural analysis to
the generic sparse propagation solver. The patch gives clients the ability to
define their own custom LatticeKey types that the generic solver maps to custom
LatticeVal types. The custom lattice keys can be used, for example, to
distinguish among mappings for regular values, values returned from functions,
and values stored in global variables. Clients are responsible for defining how
to convert between LatticeKeys and LLVM Values by providing a specialization of
the LatticeKeyInfo template.
The added unit tests demonstrate how the generic solver can be used to perform
a simplified version of interprocedural constant propagation.
Differential Revision: https://reviews.llvm.org/D37353
llvm-svn: 315919
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
The previous commit failed on MSVC due to a failure to convert an
initializer_list to a std::vector. Hopefully, MSVC will accept this version.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
llvm-svn: 315887
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
llvm-svn: 315885
Summary:
This includes some context-sensitivity in the MVT to LLT conversion so that
pointer types are tested correctly.
FIXME: I'm not happy with the way this is done since everything is a
special-case. I've yet to find a reasonable way to implement it.
select-load.mir fails because <1 x s64> loads in tablegen get priority over s64
loads. This is fixed in the next patch and as such they should be committed
together, I've posted them separately to help with the review.
Depends on D37456
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37457
llvm-svn: 315884
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Hopefully fixed the ambiguous constructor that a large number of bots reported.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
llvm-svn: 315869
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
llvm-svn: 315863
This avoid code duplication and allow us to add the disable unroll metadata elsewhere.
Differential Revision: https://reviews.llvm.org/D38928
llvm-svn: 315850
Summary:
There is an important mismatch between ISD::LOAD and G_LOAD (and likewise for
ISD::STORE and G_STORE). In SelectionDAG, ISD::LOAD is a non-atomic load
and atomic loads are handled by a separate node. However, this is not true of
GlobalISel's G_LOAD. For G_LOAD, the MachineMemOperand indicates the atomicity
of the operation. As a result, this mapping must also add a predicate that
checks for non-atomic MachineMemOperands.
This is NFC since these nodes always have predicates in practice and are
therefore always rejected at the moment.
Depends on D37443
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37445
llvm-svn: 315843
Summary:
GlobalISel and SelectionDAG require different code for the common
load/store predicates due to differences in the representation.
For example:
SelectionDAG: (load<signext,i8>:i32 GPR32:$addr) // The <> denote properties of the SDNode that are not printed in the DAG
GlobalISel: (G_SEXT:s32 (G_LOAD:s8 GPR32:$addr))
Even without that, differences in the IR (SDNode vs MachineInstr) require
differences in the C++ predicate.
This patch moves the implementation of the common load/store predicates
into tablegen so that it can handle these differences.
It's NFC for SelectionDAG since it emits equivalent code and it's NFC for
GlobalISel since the rules involving the relevant predicates are still
rejected by the importer.
Depends on D36618
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Subscribers: llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37443
Includes a partial revert of r315826 since this patch makes it necessary for
getPredCode() to return a std::string and getImmCode() should have the same
interface as getPredCode().
llvm-svn: 315841
- Update docs to match llvm coding style
- Add missing FP16_OVFL bit for gfx9
- Fix the size of the kernel descriptor in the docs
Differential Revision: https://reviews.llvm.org/D38902
llvm-svn: 315822
Summary:
This patch removes the `verifyNCD` check.
The reason for this is that the other checks are sufficient to prove or disprove correctness of any DominatorTree, and that `verifyNCD` doesn't provide (in my option) better error messages then the other ones.
Additionally, this should give a (small) improvement to the total verification time, as the check is O(n), and checking the sibling property takes O(n^3).
Reviewers: dberlin, grosser, davide, brzycki
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38802
llvm-svn: 315790
Summary:
Operand variable lookups are now performed by the RuleMatcher rather than
searching the whole matcher hierarchy for a match. This revealed a wrong-code
bug that currently affects ARM and X86 where patterns that use a variable more
than once in the match pattern will be imported but won't check that the
operands are identical. This can cause the tablegen-erated matcher to
accept matches that should be rejected.
Depends on D36569
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Subscribers: aemerson, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D36618
llvm-svn: 315780
Summary:
There's only a tablegen testcase for IntImmLeaf and not a CodeGen one
because the relevant rules are rejected for other reasons at the moment.
On AArch64, it's because there's an SDNodeXForm attached to the operand.
On X86, it's because the rule either emits multiple instructions or has
another predicate using PatFrag which cannot easily be supported at the
same time.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D36569
llvm-svn: 315761
TargetRegisterInfo::getMinimalPhysRegClass is actually pretty expensive
because it has to iterate over all the register classes.
Cache this information as we need and get it so that we limit its usage.
Right now, we heavily rely on it, because this is how we get the mapping
for vregs defined by copies from physreg (i.e., the one that are ABI
related).
Improve compile time by up to 10% for that pass.
NFC
llvm-svn: 315759
Summary:
The purpose of this patch is to expose more information about ImmLeaf-like
PatLeaf's so that GlobalISel can learn to import them. Previously, ImmLeaf
could only be used to test int64_t's produced by sign-extending an APInt.
Other tests on immediates had to use the generic PatLeaf and extract the
constant using C++.
With this patch, tablegen will know how to generate predicates for APInt,
and APFloat. This will allow it to 'do the right thing' for both SelectionDAG
and GlobalISel which require different methods of extracting the immediate
from the IR.
This is NFC for SelectionDAG since the new code is equivalent to the
previous code. It's also NFC for FastISel because FastIselShouldIgnore is 1
for the ImmLeaf subclasses. Enabling FastIselShouldIgnore == 0 for these new
subclasses will require a significant re-factor of FastISel.
For GlobalISel, it's currently NFC because the relevant code to import the
affected rules is not yet present. This will be added in a later patch.
Depends on D36086
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: bjope, aemerson, rengolin, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D36534
llvm-svn: 315747
This is only currently used for mad/fma transforms.
This is the only case where it should be used for AMDGPU,
so add an opcode to be sure.
llvm-svn: 315740
This patch moves some common utility functions out of IPSCCP and makes them
available globally. The functions determine if interprocedural data-flow
analyses can propagate information through function returns, arguments, and
global variables.
Differential Revision: https://reviews.llvm.org/D37638
llvm-svn: 315719
Summary:
This change uses the loop use list added in the previous change to remember the
loops that appear in the trip count expressions of other loops; and uses it in
forgetLoop. This lets us not scan every loop in the function on a forgetLoop
call.
With this change we no longer invalidate clear out backedge taken counts on
forgetValue. I think this is fine -- the contract is that SCEV users must call
forgetLoop(L) if their change to the IR could have changed the trip count of L;
solely calling forgetValue on a value feeding into the backedge condition of L
is not enough. Moreover, I don't think we can strengthen forgetValue to be
sufficient for invalidating trip counts without significantly re-architecting
SCEV. For instance, if we have the loop:
I = *Ptr;
E = I + 10;
do {
// ...
} while (++I != E);
then the backedge taken count of the loop is 9, and it has no reference to
either I or E, i.e. there is no way in SCEV today to re-discover the dependency
of the loop's trip count on E or I. So a SCEV client cannot change E to (say)
"I + 20", call forgetValue(E) and expect the loop's trip count to be updated.
Reviewers: atrick, sunfish, mkazantsev
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38435
llvm-svn: 315713
Summary:
This patch teaches SCEV to calculate the maxBECount when the end bound
of the loop can vary. Note that we cannot calculate the exactBECount.
This will only be done when both conditions are satisfied:
1. the loop termination condition is strictly LT.
2. the IV is proven to not overflow.
This provides more information to users of SCEV and can be used to
improve identification of finite loops.
Reviewers: sanjoy, mkazantsev, silviu.baranga, atrick
Reviewed by: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38825
llvm-svn: 315683
Significantly reduces performancei (~30%) of gipfeli
(https://github.com/google/gipfeli)
I have not yet managed to reproduce this regression with the open-source
version of the benchmark on github, but will work with others to get a
reproducer to you later today.
llvm-svn: 315680
Summary:
Currently we do not correctly invalidate memoized results for add recurrences
that were created directly (i.e. they were not created from a `Value`). This
change fixes this by keeping loop use lists and using the loop use lists to
determine which SCEV expressions to invalidate.
Here are some statistics on the number of uses of in the use lists of all loops
on a clang bootstrap (config: release, no asserts):
Count: 731310
Min: 1
Mean: 8.555150
50th %time: 4
95th %tile: 25
99th %tile: 53
Max: 433
Reviewers: atrick, sunfish, mkazantsev
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38434
llvm-svn: 315672
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
WMMA = "Warp Level Matrix Multiply-Accumulate".
These are the new instructions introduced in PTX6.0 and available
on sm_70 GPUs.
Differential Revision: https://reviews.llvm.org/D38645
llvm-svn: 315601
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
This patch fixes the bug introduced in https://reviews.llvm.org/D35907; the bug is reported by http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20171002/491452.html.
Before D35907, when GetUnderlyingObjects fails to find an identifiable object, allMMOsOkay lambda in getUnderlyingObjectsForInstr returns false and Objects vector is cleared. This behavior is unintentionally changed by D35907.
This patch makes the behavior for such case same as the previous behavior.
Since D35907 introduced a wrapper function getUnderlyingObjectsForCodeGen around GetUnderlyingObjects, getUnderlyingObjectsForCodeGen is modified to return a boolean value to ask the caller to clear the Objects vector.
Differential Revision: https://reviews.llvm.org/D38735
llvm-svn: 315565
Here we add a secondary option parser to llvm-isel-fuzzer (and provide
it for use with other fuzzers). With this, you can copy the fuzzer to
a name like llvm-isel-fuzzer=aarch64-gisel for a fuzzer that fuzzer
AArch64 with GlobalISel enabled, or fuzzer=x86_64 to fuzz x86, with no
flags required. This should be useful for running these in OSS-Fuzz.
Note that this handrolls a subset of cl::opts to recognize, rather
than embedding a complete command parser for argv[0]. If we find we
really need the flexibility of handling arbitrary options at some
point we can rethink this.
This re-applies 315545 using "=" instead of ":" as a separator for
arguments.
llvm-svn: 315557