Commit Graph

177 Commits

Author SHA1 Message Date
Ulrich Weigand 5a02a02b41 [PowerPC] Accept 17-bit signed immediates for addis
The assembler currently strictly verifies that immediates for
s16imm operands are in range (-32768 ... 32767).  This matches
the behaviour of the GNU assembler, with one exception: gas
allows, as a special case, operands in an extended range
(-65536 .. 65535) for the addis instruction only (and its
extended mnemonic lis).

The main reason for this seems to be to allow using unsigned
16-bit operands for lis, e.g. like lis %r1, 0xfedc.

Since this has been supported by gas for a long time, and
assembler source code seen "in the wild" actually exploits
this feature, this patch adds equivalent support to LLVM
for compatibility reasons.

llvm-svn: 184946
2013-06-26 13:49:53 +00:00
Ulrich Weigand fd3ad693e8 [PowerPC] Support symbolic u16imm operands
Currently, all instructions taking s16imm operands support symbolic
operands.  However, for u16imm operands, we only support actual
immediate integers.  This causes the assembler to reject code like

  ori %r5, %r5, symbol@l

This patch changes the u16imm operand definition to likewise
accept symbolic operands.  In fact, s16imm and u16imm can
share the same encoding routine, now renamed to getImm16Encoding.

llvm-svn: 184944
2013-06-26 13:49:15 +00:00
Ulrich Weigand 6c31c4aae8 [PowerPC] Add rldcr/rldic instructions
This adds pattern for the rldcr and rldic instructions (the last instruction
from the rotate/shift family that were missing).  They are currently used
only by the asm parser.

llvm-svn: 184833
2013-06-25 13:17:10 +00:00
Ulrich Weigand 86247b6e27 [PowerPC] Add predicted forms of branches
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
  For these, I've added new PPC::Predicate codes corresponding
  to the BO values for predicted branch forms, and updated insn
  printing to print them correctly.  I've also added new aliases
  for the asm parser matching the new forms.
- bt/bf
  I've added new aliases matching to gBC etc.
- bd(n)z variants
  I've added new instruction patterns for the predicted forms.

In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)

llvm-svn: 184754
2013-06-24 16:52:04 +00:00
Ulrich Weigand b6a30d159e [PowerPC] Support absolute branches
There is currently only limited support for the "absolute" variants
of branch instructions.  This patch adds support for the absolute
variants of all branches that are currently otherwise supported.

This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.

While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.

No change in code generation intended.

llvm-svn: 184721
2013-06-24 11:03:33 +00:00
Ulrich Weigand 9948546923 [PowerPC] Remove symbolLo/symbolHi instruction operand types
Now that there is no longer any distinction between symbolLo
and symbolHi operands in either printing, encoding, or parsing,
the operand types can be removed in favor of simply using
s16imm.

This completes the patch series to decouple lo/hi operand part
processing from the particular instruction whose operand it is.

No change in code generation expected from this patch.

llvm-svn: 182618
2013-05-23 22:48:06 +00:00
Ulrich Weigand 41789de165 [PowerPC] Clean up generation of ha16() / lo16() markers
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate.  This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B).  The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.

This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine.  Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types.  (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)

The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs.  This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.

Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).

llvm-svn: 182616
2013-05-23 22:26:41 +00:00
Bill Schmidt f88571e027 Change some PowerPC PatLeaf definitions to ImmLeaf for fast-isel.
Using PatLeaf rather than ImmLeaf when defining immediate predicates
prevents simple patterns using those predicates from being recognized
for fast instruction selection.  This patch replaces the immSExt16
PatLeaf predicate with two ImmLeaf predicates, imm32SExt16 and
imm64SExt16, allowing a few more patterns to be recognized (ADDI,
ADDIC, MULLI, ADDI8, and ADDIC8).  Using the new predicates does not
help for LI, LI8, SUBFIC, and SUBFIC8 because these are rejected for
other reasons, but I see no reason to retain the PatLeaf predicate.

No functional change intended, and thus no test cases yet.  This is
preliminary work for enabling fast-isel support for PowerPC.  When
that support is ready, we'll be able to test this function.

llvm-svn: 182510
2013-05-22 20:09:24 +00:00
Hal Finkel 0859ef29d5 Rename PPC MTCTRse to MTCTRloop
As the pairing of this instruction form with the bdnz/bdz branches is now
enforced by the verification pass, make it clear from the name that these
are used only for counter-based loops.

No functionality change intended.

llvm-svn: 182296
2013-05-20 16:08:37 +00:00
Ulrich Weigand 2dbe06a987 [PowerPC] Fix hi/lo encoding in old-style code emitter
This patch implements the equivalent change to r182091/r182092
in the old-style code emitter.  Instead of having two separate
16-bit immediate encoding routines depending on the instruction,
this patch introduces a single encoder that checks the machine
operand flags to decide whether the low or high half of a
symbol address is required.

Since now both encoders make no further distinction between
"symbolLo" and "symbolHi", the .td operand can now use a
single getS16ImmEncoding method.

Tested by running the old-style JIT tests on 32-bit Linux.

llvm-svn: 182097
2013-05-17 14:14:12 +00:00
Hal Finkel 25c1992bc7 Implement PPC counter loops as a late IR-level pass
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.

The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.

This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).

The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).

llvm-svn: 181927
2013-05-15 21:37:41 +00:00
Ulrich Weigand 640192daa8 [PowerPC] Add assembler parser
This adds assembler parser support to the PowerPC back end.

The parser will run for any powerpc-*-* and powerpc64-*-* triples,
but was tested only on 64-bit Linux.  The supported syntax is
intended to be compatible with the GNU assembler.

The parser does not yet support all PowerPC instructions, but
it does support anything that is generated by LLVM itself.
There is no support for testing restricted instruction sets yet,
i.e. the parser will always accept any instructions it knows,
no matter what feature flags are given.

Instruction operands will be checked for validity and errors
generated.  (Error handling in general could still be improved.)

The patch adds a number of test cases to verify instruction
and operand encodings.  The tests currently cover all instructions
from the following PowerPC ISA v2.06 Book I facilities:
Branch, Fixed-point, Floating-Point, and Vector. 
Note that a number of these instructions are not yet supported
by the back end; they are marked with FIXME.

A number of follow-on check-ins will add extra features.  When
they are all included, LLVM passes all tests (including bootstrap)
when using clang -cc1as as the system assembler.

llvm-svn: 181050
2013-05-03 19:49:39 +00:00
Ulrich Weigand 136ac22eaa PowerPC: Use RegisterOperand instead of RegisterClass operands
In the default PowerPC assembler syntax, registers are specified simply
by number, so they cannot be distinguished from immediate values (without
looking at the opcode).  This means that the default operand matching logic
for the asm parser does not work, and we need to specify custom matchers.
Since those can only be specified with RegisterOperand classes and not
directly on the RegisterClass, all instructions patterns used by the asm
parser need to use a RegisterOperand (instead of a RegisterClass) for
all their register operands.

This patch adds one RegisterOperand for each RegisterClass, using the
same name as the class, just in lower case, and updates all instruction
patterns to use RegisterOperand instead of RegisterClass operands.

llvm-svn: 180611
2013-04-26 16:53:15 +00:00
Ulrich Weigand fa451ba1b9 PowerPC: Fix encoding of rldimi and rldcl instructions
When testing the asm parser, I noticed wrong encodings for the
above instructions (wrong operand name in rldimi, wrong form
and sub-opcode for rldcl).

Tests will be added together with the asm parser.

llvm-svn: 180606
2013-04-26 15:39:12 +00:00
Ulrich Weigand d0585d8686 PowerPC: Mark some more patterns as isCodeGenOnly.
A couple of recently introduced conditional branch patterns
also need to be marked as isCodeGenOnly since they cannot
be handled by the asm parser.

No change in generated code.

llvm-svn: 179690
2013-04-17 17:19:05 +00:00
Hal Finkel 95e6ea69be Mark all PPC comparison instructions as not having side effects
Now that the CR spilling issues have been resolved, we can remove the
unmodeled-side-effect attributes from the comparison instructions (and also
mark them as isCompare). By allowing these, by default, to have unmodeled side
effects, we were hiding problems with CR spilling; but everything seems much
happier now.

llvm-svn: 179502
2013-04-15 02:37:46 +00:00
Hal Finkel 2f29391504 Mark all PPC CR registers to be spilled as live-in and tag MFCR appropriately
Leaving MFCR has having unmodeled side effects is not enough to prevent
unwanted instruction reordering post-RA. We could probably apply a stronger
barrier attribute, but there is a better way: Add all (not just the first) CR
to be spilled as live-in to the entry block, and add all CRs to the MFCR
instruction as implicitly killed.

Unfortunately, I don't have a small test case.

llvm-svn: 179465
2013-04-13 23:06:15 +00:00
Hal Finkel 1b58f335ca PPC: Remove (broken) nested implicit definition lists
TableGen will not combine nested list 'let' bindings into a single list, and
instead uses only the inner scope. As a result, several instruction definitions
were missing implicit register defs that were in outer scopes. This de-nests
these scopes and makes all instructions have only one let binding which sets
implicit register definitions.

llvm-svn: 179392
2013-04-12 18:17:57 +00:00
Hal Finkel 654d43b41a Add PPC instruction record forms and associated query functions
This is prep. work for the implementation of optimizeCompare. Many PPC
instructions have 'record' forms (in almost all cases, this means that the RC
bit is set) that cause the result of the instruction to be compared with zero,
and the result of that comparison saved in a predefined condition register. In
order to add the record forms of the instructions without too much
copy-and-paste, the relevant functions have been refactored into multiclasses
which define both the record and normal forms.

Also, two TableGen-generated mapping functions have been added which allow
querying the instruction code for the record form given the normal form (and
vice versa).

No functionality change intended.

llvm-svn: 179356
2013-04-12 02:18:09 +00:00
Hal Finkel 500b004566 PPC: Prep for if conversion of bctr[l]
This adds in-principle support for if-converting the bctr[l] instructions.
These instructions are used for indirect branching. It seems, however, that the
current if converter will never actually predicate these. To do so, it would
need the ability to hoist a few setup insts. out of the conditionally-executed
block. For example, code like this:
  void foo(int a, int (*bar)()) { if (a != 0) bar(); }
becomes:
        ...
        beq 0, .LBB0_2
        std 2, 40(1)
        mr 12, 4
        ld 3, 0(4)
        ld 11, 16(4)
        ld 2, 8(4)
        mtctr 3
        bctrl
        ld 2, 40(1)
.LBB0_2:
        ...
and it would be safe to do all of this unconditionally with a predicated
beqctrl instruction.

llvm-svn: 179156
2013-04-10 06:42:34 +00:00
Hal Finkel 5711eca19c Allow PPC B and BLR to be if-converted into some predicated forms
This enables us to form predicated branches (which are the same conditional
branches we had before) and also a larger set of predicated returns (including
instructions like bdnzlr which is a conditional return and loop-counter
decrement all in one).

At the moment, if conversion does not capture all possible opportunities. A
simple example is provided in early-ret2.ll, where if conversion forms one
predicated return, and then the PPCEarlyReturn pass picks up the other one. So,
at least for now, we'll keep both mechanisms.

llvm-svn: 179134
2013-04-09 22:58:37 +00:00
Hal Finkel 7795e47b5e PPC rotate instructions don't have unmodeled side effcts
llvm-svn: 178982
2013-04-07 15:06:53 +00:00
Hal Finkel b47a69acde Most PPC M[TF]CR instructions do not have side effects
llvm-svn: 178978
2013-04-07 14:33:13 +00:00
Hal Finkel d71cc3a7f3 PPC pre-increment load instructions do not have side effects
A few were missed in r178972.

llvm-svn: 178973
2013-04-07 06:30:47 +00:00
Hal Finkel 6efd45e902 PPC pre-increment load instructions do not have side effects
llvm-svn: 178972
2013-04-07 05:46:58 +00:00
Hal Finkel 8fc33e5d95 PPC ISEL is a select and never has side effects
llvm-svn: 178960
2013-04-06 19:30:28 +00:00
Hal Finkel f6d45f2379 Add more PPC floating-point conversion instructions
The P7 and A2 have additional floating-point conversion instructions which
allow a direct two-instruction sequence (plus load/store) to convert from all
combinations (signed/unsigned i32/i64) <--> (float/double) (on previous cores,
only some combinations were directly available).

llvm-svn: 178480
2013-04-01 17:52:07 +00:00
Hal Finkel 290376dd78 Add the PPC popcntw instruction
The popcntw instruction is available whenever the popcntd instruction is
available, and performs a separate popcnt on the lower and upper 32-bits.
Ignoring the high-order count, this can be used for the 32-bit input case
(saving on the explicit zero extension otherwise required to use popcntd).

llvm-svn: 178470
2013-04-01 15:58:15 +00:00
Hal Finkel e53429a13e Cleanup PPC(64) i32 -> float/double conversion
The existing SINT_TO_FP code for i32 -> float/double conversion was disabled
because it relied on broken EXTSW_32/STD_32 instruction definitions. The
original intent had been to enable these 64-bit instructions to be used on CPUs
that support them even in 32-bit mode.  Unfortunately, this form of lying to
the infrastructure was buggy (as explained in the FIXME comment) and had
therefore been disabled.

This re-enables this functionality, using regular DAG nodes, but only when
compiling in 64-bit mode. The old STD_32/EXTSW_32 definitions (which were dead)
are removed.

llvm-svn: 178438
2013-03-31 01:58:02 +00:00
Hal Finkel 31d2956510 Add the PPC64 ldbrx/stdbrx instructions
These are 64-bit load/store with byte-swap, and available on the P7 and the A2.
Like the similar instructions for 16- and 32-bit words, these are matched in the
target DAG-combine phase against load/store-bswap pairs.

llvm-svn: 178276
2013-03-28 19:25:55 +00:00
Hal Finkel a4d074863a Add the PPC64 popcntd instruction
PPC ISA 2.06 (P7, A2, etc.) has a popcntd instruction. Add this instruction and
tell TTI about it so that popcount-loop recognition will know about it.

llvm-svn: 178233
2013-03-28 13:29:47 +00:00
Hal Finkel 25aab01058 Fix typo in PPCInstr64Bit
llvm-svn: 178219
2013-03-28 03:38:08 +00:00
Hal Finkel 573fc28d64 Use the PPC no-r0 class on the TOC LD pseudos
The register parameter in these instructions becomes the base register in an
r+i ld instruction (and, thus, cannot be r0).

This is not yet testable because we don't yet allocate r0 (and even then any
test would be very fragile).

llvm-svn: 178121
2013-03-27 06:36:55 +00:00
Hal Finkel 42a312b261 Apply the no-r0 class to PPC TOC ADDI[S] pseudo instructions
Like the addi/addis instructions themselves, these pseudo instructions also
cannot have r0 as their register parameter (because it will be interpreted as
the value 0).

This is not yet testable because we don't yet allocate r0 (and even when we do,
any regression test would be very fragile because it would depend on the
register allocator heuristics).

llvm-svn: 178118
2013-03-27 05:57:56 +00:00
Ulrich Weigand bbfb0c55c8 PowerPC: Mark patterns as isCodeGenOnly.
There remain a number of patterns that cannot (and should not)
be handled by the asm parser, in particular all the Pseudo patterns.

This commit marks those patterns as isCodeGenOnly.

No change in generated code.

llvm-svn: 178008
2013-03-26 10:57:16 +00:00
Ulrich Weigand 4a0838863b PowerPC: Remove LDrs pattern.
The LDrs pattern is a duplicate of LD, except that it accepts memory
addresses where the displacement is a symbolLo64.  An operand type
"memrs" is defined for just that purpose.

However, this wouldn't be necessary if the default "memrix" operand
type were to simply accept 64-bit symbolic addresses directly.
The only problem with that is that it uses "symbolLo", which is
hardcoded to 32-bit.

To fix this, this commit changes "memri" and "memrix" to use new
operand types for the memory displacement, which allow iPTR
instead of i32.  This will also make address parsing easier to
implment in the asm parser.

No change in generated code.

llvm-svn: 178005
2013-03-26 10:55:45 +00:00
Ulrich Weigand 35f9fdfdfd PowerPC: Remove ADDIL patterns.
The ADDI/ADDI8 patterns are currently duplicated into ADDIL/ADDI8L,
which describe the same instruction, except that they accept a
symbolLo[64] operand instead of a s16imm[64] operand.

This duplication confuses the asm parser, and it actually not really
needed, since symbolLo[64] already accepts immediate operands anyway.
So this commit removes the duplicate patterns.

No change in generated code.

llvm-svn: 178004
2013-03-26 10:55:20 +00:00
Ulrich Weigand 4749b1ecd8 PowerPC: Use CCBITRC operand for ISEL patterns.
This commit changes the ISEL patterns to use a CCBITRC operand
instead of a "pred" operand.  This matches the actual instruction
text more directly, and simplifies use of ISEL with the asm parser.
In addition, this change allows some simplification of handling
the "pred" operand, as this is now only used by BCC.

No change in generated code.

llvm-svn: 178003
2013-03-26 10:54:54 +00:00
Ulrich Weigand 410a40bb5f PowerPC: Move some 64-bit branch patterns.
In PPCInstr64Bit.td, some branch patterns appear in a different sequence
than the corresponding 32-bit patterns in PPCInstrInfo.td.

To simplify future changes that affect both files, this commit moves
those patterns to rearrange them into a similar sequence.

No effect on generated code.

llvm-svn: 178001
2013-03-26 10:53:03 +00:00
Ulrich Weigand c8868106e6 Use direct types in PowerPC instruction patterns.
This commit updates the PowerPC back-end (PPCInstrInfo.td and
PPCInstr64Bit.td) to use types instead of register classes in
instruction patterns, along the lines of Jakob Stoklund Olesen's
changes in r177835 for Sparc.
 

llvm-svn: 177890
2013-03-25 19:05:30 +00:00
Ulrich Weigand ec6e2cd124 Use direct types in PowerPC Pat patterns.
This commit updates the PowerPC back-end (PPCInstrInfo.td and
PPCInstr64Bit.td) to use types instead of register classes in
Pat patterns, along the lines of Jakob Stoklund Olesen's
changes in r177829 for Sparc.

llvm-svn: 177889
2013-03-25 19:04:58 +00:00
Ulrich Weigand f62e83f415 Remove ABI-duplicated call instruction patterns.
We currently have a duplicated set of call instruction patterns depending
on the ABI to be followed (Darwin vs. Linux).  This is a bit odd; while the
different ABIs will result in different instruction sequences, the actual
instructions themselves ought to be independent of the ABI.  And in fact it
turns out that the only nontrivial difference between the two sets of
patterns is that in the PPC64 Linux ABI, the instruction used for indirect
calls is marked to take X11 as extra input register (which is indeed used
only with that ABI to hold an incoming environment pointer for nested
functions).  However, this does not need to be hard-coded at the .td
pattern level; instead, the C++ code expanding calls can simply add that
use, just like it adds uses for argument registers anyway.

No change in generated code expected.

llvm-svn: 177735
2013-03-22 15:24:13 +00:00
Ulrich Weigand 1df06d8b58 Rename memrr ptrreg and offreg components.
Currently, the sub-operand of a memrr address that corresponds to what
hardware considers the base register is called "offreg", while the
sub-operand that corresponds to the offset is called "ptrreg".

To avoid confusion, this patch simply swaps the named of those two
sub-operands and updates all uses.  No functional change is intended.

llvm-svn: 177734
2013-03-22 14:59:13 +00:00
Ulrich Weigand e90b022468 Fix swapped BasePtr and Offset in pre-inc memory addresses.
PPCTargetLowering::getPreIndexedAddressParts currently provides
the base part of a memory address in the offset result, and the
offset part in the base result.  That swap is then undone again
when an MI instruction is generated (in PPCDAGToDAGISel::Select
for loads, and using .md Pat patterns for stores).

This patch reverts this double swap, to make common code and
back-end be in sync as to which part of the address is base
and which is offset.

To avoid performance regressions in certain cases, target code
now checks whether the choice of base register would be rejected
for pre-inc accesses by common code, and attempts to swap base
and offset again in such cases.  (Overall, this means that now
pre-ice accesses are generated *more* frequently than before.)

llvm-svn: 177733
2013-03-22 14:58:48 +00:00
Ulrich Weigand e448badbb1 Remove the xaddroff ComplexPattern.
The xaddroff pattern is currently (mistakenly) used to recognize
the *base* register in pre-inc store patterns.  This patch replaces
those uses by ptr_rc_nor0 (as is elsewhere done to match the base
register of an address), and removes the now unused ComplexPattern.

llvm-svn: 177731
2013-03-22 14:57:48 +00:00
Hal Finkel 891671afe5 Fix a register-class comparison bug in PPCCTRLoops
Thanks to Jakob for isolating the underlying problem from the
test case in r177423. The original commit had introduced
asymmetric copy operations, but these turned out to be a work-around
to the real problem (the use of == instead of hasSubClassEq in PPCCTRLoops).

llvm-svn: 177679
2013-03-21 23:23:34 +00:00
Hal Finkel 756810fe36 Implement builtin_{setjmp/longjmp} on PPC
This implements SJLJ lowering on PPC, making the Clang functions
__builtin_{setjmp/longjmp} functional on PPC platforms. The implementation
strategy is similar to that on X86, with the exception that a branch-and-link
variant is used to get the right jump address. Credit goes to Bill Schmidt for
suggesting the use of the unconditional bcl form (instead of the regular bl
instruction) to limit return-address-cache pollution.

Benchmarking the speed at -O3 of:

static jmp_buf env_sigill;

void foo() {
                __builtin_longjmp(env_sigill,1);
}

main() {
	...

        for (int i = 0; i < c; ++i) {
                if (__builtin_setjmp(env_sigill)) {
                        goto done;
                } else {
                        foo();
                }

done:;
        }

	...
}

vs. the same code using the libc setjmp/longjmp functions on a P7 shows that
this builtin implementation is ~4x faster with Altivec enabled and ~7.25x
faster with Altivec disabled. This comparison is somewhat unfair because the
libc version must also save/restore the VSX registers which we don't yet
support.

llvm-svn: 177666
2013-03-21 21:37:52 +00:00
Ulrich Weigand 01dd4c1a12 Add missing mayLoad flag to LHAUX8 and LWAUX.
All pre-increment load patterns need to set the mayLoad flag (since
they don't provide a DAG pattern).

This was missing for LHAUX8 and LWAUX, which is added by this patch.

llvm-svn: 177431
2013-03-19 19:53:27 +00:00
Ulrich Weigand f8030096b1 Rewrite LHAU8 pattern to use standard memory operand.
As opposed to to pre-increment store patterns, the pre-increment
load patterns were already using standard memory operands, with
the sole exception of LHAU8.

As there's no real reason why LHAU8 should be different here,
this patch simply rewrites the pattern to also use a memri
operand, just like all the other patterns.

llvm-svn: 177430
2013-03-19 19:52:30 +00:00
Ulrich Weigand d850167a19 Rewrite pre-increment store patterns to use standard memory operands.
Currently, pre-increment store patterns are written to use two separate
operands to represent address base and displacement:

  stwu $rS, $ptroff($ptrreg)

This causes problems when implementing the assembler parser, so this
commit changes the patterns to use standard (complex) memory operands
like in all other memory access instruction patterns:

  stwu $rS, $dst

To still match those instructions against the appropriate pre_store
SelectionDAG nodes, the patch uses the new feature that allows a Pat
to match multiple DAG operands against a single (complex) instruction
operand.

Approved by Hal Finkel.

llvm-svn: 177429
2013-03-19 19:52:04 +00:00