source-location-preserving
TreeTransform::TranformNestedNameSpecifierLoc(). No functionality
change: the victim had no callers (that themselves had callers) anyway.
llvm-svn: 126853
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
of an Objective-C method to be overridden on a case-by-case basis. This
is a higher-level tool than ns_returns_retained &c.; it lets users specify
that not only does a method have different retain/release semantics, but
that it semantically acts differently than one might assume from its name.
This in turn is quite useful to static analysis.
llvm-svn: 126839
of an expansion, and we have a paramameter that is not a parameter
pack, don't suppress substitution of parameter packs within this
context.
llvm-svn: 126819
conventional categories into Basic and AST. Update the self-init checker
to use this logic; CFRefCountChecker is complicated enough that I didn't
want to touch it.
llvm-svn: 126817
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
compare it with getDriver().Dir.c_str(), since that is a pointer
comparison, not a "are these strings equal" comparison.
Instead, just compare with getDriver().Dir directly, so both sides will
get promoted to std::string, and the regular std::string comparison
operator applies.
Patch by Dimitry Andric!
llvm-svn: 126791
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
ToolChain's FilePaths. If clang is installed as a port in /usr/local,
it is *not* supposed to use /usr/local/lib by default, for example.
Additionally, there are no clang-related executables in either
/usr/libexec, or getDriver().Dir + "/../libexec", anymore, so remove
that from the ToolChain's ProgramPaths.
Patch by Dimitry Andric!
llvm-svn: 126760
retrieve the library paths from the ToolChain object instead.
Copy the relevant code from linuxtools::Link::ConstructJob(), and
replace the std::string stuff with llvm::StringRef, while we're here.
Patch by Dimitry Andric!
llvm-svn: 126757
The prototype for objc_msgSend() is technically variadic -
`id objc_msgSend(id, SEL, ...)`.
But all method calls should use a prototype that matches the method,
not the prototype for objc_msgSend itself().
// rdar://9048030
llvm-svn: 126754
diagnose ignored qualifiers on return types, only assume that there is
a pointer chunk if the type is *structurally* a pointer type, not if
it's a typedef of a pointer type. Fixes PR9328/<rdar://problem/9055428>.
llvm-svn: 126751
a dependent template name rather than (indirectly and incorrectly)
trying to determine whether we can compute a context for the
nested-name-specifier. Fixes a GCC testsuite regression,
<rdar://problem/9068589>.
llvm-svn: 126749
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
possible for these to show up due to metaprogramming both in unevaluated
contexts and compile-time dead branches.
Those aren't the bugs we're looking for.
llvm-svn: 126739
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
- renames evalCastNL and evalCastL to evalCastFromNonLoc and
evalCastFromLoc (avoid abbreviations that aren't well known).
- makes all function parameter names start with a lower case letter
for consistency and distinction from member variables.
- avoids abbreviations in function parameter names.
Reviewed by kremenek@apple.com.
llvm-svn: 126722
source-location information into a NestedNameSpecifierLocBuilder
class, which lives within the AST library and centralize all knowledge
of the format of nested-name-specifier location information here.
No functionality change.
llvm-svn: 126716
source-location information. We don't actually preserve this
information in any of the resulting TypeLocs (yet), so it doesn't
matter.
llvm-svn: 126693
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
The prototype for objc_msgSend() is technically variadic -
`id objc_msgSend(id, SEL, ...)`.
But all method calls should use a prototype that matches the method,
not the prototype for objc_msgSend itself().
// rdar://9048030
llvm-svn: 126678
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
They cooperate in that NSErrorChecker listens for ImplicitNullDerefEvent events that
DereferenceChecker can dispatch.
ImplicitNullDerefEvent is when we dereferenced a location that may be null.
llvm-svn: 126659
A checker can register as receiver/listener of "events" (basically it registers a callback
with a function getting called with an argument of the event type) and other checkers can
register as "dispatchers" and can pass an event object to all the listeners.
This allows cooperation amongst checkers but with very loose coupling.
llvm-svn: 126658
dependent template names. There is still a lot of redundant code in
TreeTransform to cope with TemplateSpecializationTypes, which I'll
remove in stages.
llvm-svn: 126656
* Add default implementations (no-op) for ExternalASTSource's pure virtual functions. There are valid use cases that can live with these defaults.
* Move ExternalASTSource's out of line implementations into separate source file.
* Whitespace, forward decl, #include cleanup.
llvm-svn: 126648
of -fexceptions to disably C++ exceptions. The correct code was in the
ObjC branch, this just mirrors that logic on the C++ side of things.
Thanks to John Wiegley for pointing this out.
llvm-svn: 126640
The previous name was inaccurate as this token in fact appears at
the end of every preprocessing directive, not just macro definitions.
No functionality change, except for a diagnostic tweak.
llvm-svn: 126631
C++ exceptions, even when exceptions have been turned off using -fno-exceptions.
Make the -fobjc-exceptions flag do the same thing, but for Objective-C exceptions.
C++ and Objective-C exceptions can also be disabled using -fno-cxx-excptions and
-fno-objc-exceptions.
llvm-svn: 126630
they are known to be exact multiples of the width of the char type. Add a
test case to CodeGen/union.c that would have caught the problem with the
previous attempt. No change in functionality intended.
llvm-svn: 126628
live case of a switch statement when switching on a constant. This is terribly
limited, but enough to handle the trivial example included. Before we would
emit:
define void @test1(i32 %i) nounwind {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
switch i32 1, label %sw.epilog [
i32 1, label %sw.bb
]
sw.bb: ; preds = %entry
%tmp = load i32* %i.addr, align 4
%inc = add nsw i32 %tmp, 1
store i32 %inc, i32* %i.addr, align 4
br label %sw.epilog
sw.epilog: ; preds = %sw.bb, %entry
switch i32 0, label %sw.epilog3 [
i32 1, label %sw.bb1
]
sw.bb1: ; preds = %sw.epilog
%tmp2 = load i32* %i.addr, align 4
%add = add nsw i32 %tmp2, 2
store i32 %add, i32* %i.addr, align 4
br label %sw.epilog3
sw.epilog3: ; preds = %sw.bb1, %sw.epilog
ret void
}
now we emit:
define void @test1(i32 %i) nounwind {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%tmp = load i32* %i.addr, align 4
%inc = add nsw i32 %tmp, 1
store i32 %inc, i32* %i.addr, align 4
ret void
}
This improves -O0 compile time (less IR to generate and shove through the code
generator) and the clever linux kernel people found a way to fail to build if we
don't do this optimization. This step isn't enough to handle the kernel case
though.
llvm-svn: 126597
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
specifiers such as
typename T::template apply<U>
Previously, we would turn T::template apply<U> into a
TemplateSpecializationType. Then, we'd reprocess that
TemplateSpecializationType and turn it into either a
TemplateSpecializationType wrapped in an ElaboratedType (when we could
resolve "apply" to a template declaration) or a
DependentTemplateSpecializationType. We now produce the same ASTs but
without generating the intermediate TemplateSpecializationType.
The end goal here is to avoid generating TemplateSpecializationTypes
with dependent template-names, ever. We're not there yet.
llvm-svn: 126589
This successfully performs constructor lookup and verifies that a
delegating initializer is the only initializer present.
This does not perform loop detection in the initialization, but it also
doesn't codegen delegating constructors at all, so this won't cause
runtime infinite loops yet.
llvm-svn: 126552
don't let calls to such functions go down the normal type-checking path.
Test this out with __builtin_classify_type and __builtin_constant_p.
llvm-svn: 126539
This isn't totally complete. Right now scan-build uses some heuristics to determine
which checkers are enabled by default, but it cannot always tell which checkers
are not enabled.
llvm-svn: 126521
silliness, and actually use the existing facilities of raw_ostream to do
escaping.
This will also hopefully fix an assert when building with signed char
(MSVC I think).
llvm-svn: 126505
marking selected overloads into the callers. This allows a few callers
to skip it altogether (they would have anyways because they weren't
interested in successful overloads) or defer until after further checks
take place much like the check required for PR9323 to avoid marking
unused copy constructors.
llvm-svn: 126503
declarations as referenced when in fact we're not going to even form
a call in the AST. This is significant because we attempt to allow as an
extension classes with intentionally private and undefined copy
constructors to have temporaries bound to references, and so shouldn't
warn about the lack of definition for that copy constructor when the
class is internal.
Doug, John wasn't really satisfied with the presence of overloading at
all. This is a stop-gap and there may be a better solution. If you can
give me some hints for how you'd prefer to see this solved, I'll happily
switch things over.
llvm-svn: 126480
necessarily enclose the innermost normal cleanup depth, because
the top of the jump scope stack might be an EH cleanup or EH scope.
Fixes PR9303.
llvm-svn: 126472
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
I tried to add test cases for these, but I can't because variables
aren't warned on the way functions are and the codegen layer appears to
use different logic for determining that 'a' and 'g' in the test case
should receive C mangling. I've included the test so that if we ever
switch the codegen layer to use these functions, we won't regress due to
latent bugs.
llvm-svn: 126453
For example, if 'core.experimental.UnreachableCode' is hidden, it should not be enabled with 'core.experimental'.
Note that this requires llvm commit r126436.
llvm-svn: 126439
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
Add an interface for last resort, unqualified lookup. It can provide results for unqualified lookup when Sema fails to find anything itself.
llvm-svn: 126387
This fixes a crash reported in PR9287, and also fixes a false positive involving the value of such ternary
expressions not properly getting propagated.
llvm-svn: 126362
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
with getter and setter methods in both bit units and CharUnits. This will help
simplify some of the unit mismatch in the parts of the code where sizes are
known to be exact multiples of the width of the char type.
Assertions in the getters help guard against accidentally converting to
CharUnits when sizes are not exact multiples of the char width.
llvm-svn: 126354
with another component in the nested-name-specifiers, updating its
representation (a NestedNameSpecifier) and source-location information
(currently a SourceRange) simultaneously. This is groundwork for
adding source-location information to nested-name-specifiers.
llvm-svn: 126346
to create it. Lit doesn't apparently clean up test directories
effectively, and so this broke randomly on subsequent runs.
Also XFAIL the test on windows, as there's not much hope for these
commands doing the right thing there.
Paired with Nick Lewycky.
llvm-svn: 126344
expressions. Consider the code:
int64_t i = 10 << 30;
This compiles fine, but most developers expect it to produce the value
for 10 gigs, not -2 gigs. This is actually undefined behavior because
the LHS is a signed integer type.
The warning is currently gated behind -Wshift-overflow.
There is a special case where only the sign bit is overridden that gets
a custom error message and is by default ignored. This case is much less
likely to cause observed buggy behavior, it's just undefined behavior
according to the spec. This warning can be enabled with
-Wshift-sign-overflow.
Original patch by Oleg Slezberg, with style tweaks and some correctness
fixes by me.
llvm-svn: 126342
-Introduce EndOfFunctionNodeBuilder::withCheckerTag to allow it be "specialized" with a
checker tag and not require the checkers to pass a tag.
-For EndOfFunctionNodeBuilder::generateNode, reverse the order of tag/P parameters since
there are actual calls that assume the second parameter is ExplodedNode.
llvm-svn: 126332
several ways. We now warn for more of the return types, and correctly
locate the ignored ones. Also adds fix-it hints to remove the ignored
qualifiers. Fixes much of PR9058, although not all of it.
Patch by Hans Wennborg, a couple of minor style tweaks from me.
llvm-svn: 126321
diagnostics that occur in unreachable code (e.g., -Warray-bound).
We only pay the cost of doing the reachability analysis when we issue one of these diagnostics.
llvm-svn: 126290