The header contains an offset to the DWARF abbreviations for the CU. The offset
must be section relative for COFF and absolute for others. The non-assembly
code path for the DWARF header generation already had the correct emission for
the headers. This corrects just the assembly path. Due to the invalid
relocation, processing of the debug information would halt previously on the
first assembly input as the associated abbreviations would be out of range as
they would have the location increased by image base and the section offset.
This address PR20332.
llvm-svn: 213275
Just tried this on a few tests and this was the only one that was
easily ported to use the new feature, so we'll go with that for now.
Hopefully can act as inspiration/reminder for other tests.
Not all debug info tests need to check for every DW_TAG or NULL child
terminator, but perhaps they should (just to ensure they don't accidentally
end up with tags nested inside other tags without the test failing, for example)
llvm-svn: 213092
The dwarf FPR numbers are supposed to have the order F0, F2, F4, F6,
F1, F3, F5, F7, F8, etc., which matches the pairing of registers for
long doubles. E.g. a long double stored in F0 is paired with F2.
llvm-svn: 212701
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212649
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 212205
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212203
This reverts commit r212085.
This breaks the sanitizer bot... & I thought I'd tried pretty hard not
to do that. Guess I need to try harder.
llvm-svn: 212089
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
and I now believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 212085
separate MDNode so they can be uniqued via folding set magic. To conserve
space, DIVariable nodes are still variable-length, with the last two
fields being optional.
No functional change.
http://reviews.llvm.org/D3526
llvm-svn: 212050
Reverting this again, didn't mean to commit it - while r211872 fixes one
of the issues here, there are still others to figure out and address.
This reverts commit r211871.
llvm-svn: 211873
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 211723
Most of this is just tests that were silently succeeding in spite of
schema changes I made over a year ago. Cleaning them up as they lead to
failures in a change I'm working on/will come soon.
test/DebugInfo/2010-01-19-DbgScope.ll was removed as it tested miscoping
where a DebugLoc described a location not in the current function. The
test case doesn't describe why this is a valid situation and should be
supported, so I'm removing it and shortly going to commit changes that
make this firmly unsupported/assert-fail.
llvm-svn: 211628
Targets can assume that a target streamer is present, so they have to be able
to construct a null streamer in order to set the target streamer in it to.
Fixes a crash when using the null streamer with arm.
llvm-svn: 211358
The address pool was being emitted before location lists. The latter
could add more entries to the pool which would be lost/never emitted.
llvm-svn: 211284
Use the MCStreamer base implementations for file ID tracking instead of
overriding them as no-ops.
Avoids assertions when streaming Dwarf debug info, and fixes ASM parsing of loc
and file directives.
llvm-svn: 211282
Currently, llvm always emits a DWARF CIE with a version of 1, even when emitting
DWARF 3 or 4, which both support CIE version 3. This patch makes it emit the
newer CIE version when we are emitting DWARF 3 or 4. This will not reduce
compatibility, as we already emit other DWARF3/4 features, and is worth doing as
the DWARF3 spec removed some ambiguities in the interpretation of call frame
information.
It also fixes a minor bug where the "return address" field of the CIE was
encoded as a ULEB128, which is only valid when the CIE version is 3. There are
no test changes for this, because (as far as I can tell) none of the platforms
that we test have a return address register with a DWARF register number >127.
llvm-svn: 211272
This patch is a follow up to r211040 & r211052. Rather than bailing out of fast
isel this patch will generate an alternate instruction (movabsq) instead of the
leaq. While this will always have enough room to handle the 64 bit displacment
it is generally over kill for internal symbols (most displacements will be
within 32 bits) but since we have no way of communicating the code model to the
the assmebler in order to avoid flagging an absolute leal/leaq as illegal when
using a symbolic displacement.
llvm-svn: 211130
Added comment to clarify why we r211040 choose to bail out of fast isel instead
of generating a more complicated relocation, and fix mislabelled register in the
comments of the asan test case.
llvm-svn: 211052
On x86_86 the lea instruction can only use a 32 bit immediate value. When
the code is compiled statically the RIP register is not used, meaning the
immediate is all that can be used for the relocation, which is not sufficient
in the case of targets more than +/- 2GB away. This patch bails out of fast
isel in those cases and reverts to DAG which does the right thing.
Test case included.
llvm-svn: 211040
I haven't nailed this down entirely, but this is about as small of a
test case as I can seem to construct and adequately demonstrates the
crasher. I'll continue investigating the root cause/fix(es).
llvm-svn: 210993
Rather than relying on abstract variables looked up at the time the
concrete variable is created, look them up at the end of the module to
ensure they're referenced even if they're created after the concrete
definition. This completes/matches the work done in r209677 to handle
this for the subprograms themselves.
llvm-svn: 210946
This doesn't fix the abstract variable handling yet, but it introduces a
similar delay mechanism as was added for subprograms, causing
DW_AT_location to be reordered to the beginning of the attribute list
for local variables, and fixes all the test fallout for that.
A subsequent commit will remove the abstract variable handling in
DbgVariable and just do the abstract variable lookup at module end to
ensure that abstract variables introduced after their concrete
counterparts are appropriately referenced by the concrete variable.
llvm-svn: 210943
In an effort to fix concrete variables referencing abstract origins
where the concrete variable preceeds the first inlined usage, the
addition of attributes such as name, file, etc will be delayed until the
end of the module (to wait to see if any inlined instances have
occurred, thus necessitating an abstract definition that the concrete
definition should also reference).
These test cases don't actually need to care about this ordering of
attributes, so update them to be more resilient to such changes coming
in the near future.
llvm-svn: 210940
This silently broke a long time ago when I unified some aspects of the
debug info schema. I'm just cleaning these up if/when they become a
problem.
llvm-svn: 210939
Previous algorithm for constructing [Address ranges]->[Compile Units]
mapping was wrong. It somewhat relied on the assumption that address ranges
for different compile units may not overlap. It is not so.
For example, two compile units may contain the definition of the same
linkonce_odr function. These definitions will be merged at link-time,
resulting in equivalent .debug_ranges entries for both these units
Instead of sorting and merging original address ranges (from .debug_ranges
and .debug_aranges), implement a different approach: save endpoints
of all ranges, and then use a sweep-line approach to construct
the desired mapping. If we find that certain address maps to
several compilation units, we just pick any of them.
llvm-svn: 210860
Turns out that DW_AT_ranges_base attribute sets the offset for
DW_AT_ranges values specified in the .dwo file, but not for DW_AT_ranges specified
in the skeleton compile unit DIE in the main executable. This is extremely confusing,
and would hopefully be fixed in DWARF-5 when it's finalized. For now this
behavior makes sense, as otherwise Fission would break DWARF consumers who
doesn't know anything about DW_AT_ranges_base.
llvm-svn: 210809
Don't terminate location ranges for register-described variables
at the end of machine basic block if this register is never modified
in the function body, except for the prologue and epilogue. Prologue
location is guessed by FrameSetup flags on MachineInstructions, while
epilogue location is deduced from debug locations of instructions
in the basic blocks ending with return instructions.
This patch is mostly targeted to fix non-trivial debug locations for
variables addressed via stack and frame pointers.
It is not really a generic fix. We can still produce poor debug info
for register-described variables if this register *is* modified somewhere
in the function, but in unrelated places. This might be the case for the debug
info in optimized binaries (e.g. for local variables in inlined functions).
LiveDebugVariables pass in CodeGen attempts to fix this problem by adjusting
DBG_VALUE instructions, but this pass is tied to greedy register allocator,
which is used in optimized builds only. Proper fix would likely involve
generalizing LiveDebugVariables to all register allocators. See more discussion
in http://reviews.llvm.org/D3933 review thread.
I'm proceeding with this patch to fix immediate severe problems and
important cases, e.g. fix completely broken debug info with AddressSanitizer
and fix PR19307 (missing debug info for by-value std::string arguments).
llvm-svn: 210492
Instructions from __nodebug__ functions don't have file:line
information even when inlined into no-nodebug functions. As a result,
intrinsics (SSE and other) from <*intrin.h> clang headers _never_
have file:line information.
With this change, an instruction without !dbg metadata gets one from
the call instruction when inlined.
Fixes PR19001.
llvm-svn: 210459
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
llvm-svn: 210379
These checks were accidentally skipping the 0x prefix in the hex
offsets, then cunningly ignoring the prefix in the use of those captured
values.
Except in the case of the unit length, where the match was only matching
the leading '0' before the x in the 0x prefix, then matching that
against the length. We can't actually express the length association
here, as the length field in the Compile Unit header does not include
the length field itself, but the length field in the pubnames section
/does/ include the size of the length field in the Compile Unit header -
so the two numbers are actually 4 bytes different. Just skip matching
that.
llvm-svn: 210364
This was added to test that DW_AT_GNU_pubnames used sec_offset in DWARF4
and data4 in DWARF3 and below. Since then we've updated
DW_AT_GNU_pubnames to be a flag, rather than a section offset anyway.
Granted this still differs between DWARF 3 and DWARF 4
(FORM_flag_present versun FORM_flag) but it doesn't seem worthwhile
testing that codepath again here. It's covered adequately in many other
test cases.
And while I'm here, don't hardcode the byte size of the compile unit -
it's not relevant to this test and just makes it brittle if/when
anything changes in the way this CU is emitted.
llvm-svn: 210362
Unused arguments were not being added to the argument list, but instead
treated as arbitrary scope variables. This meant they weren't carefully
added in the original argument order.
In this particular example, though, it turns out the argument is only
/mostly/ unused (well, actually it's entirely used, but in a specific
way). It's a struct that, due to ABI reasons, is decomposed into chunks
(exactly one chunk, since it has one member) and then passed. Since only
one of those chunks is used (SROA, etc, kill the original reconstitution
code) we don't have a location to describe the whole variable.
In this particular case, since the struct consists of just the one int,
once we have partial location information, this should have a location
that describes the entire variable (since the piece is the entirety of
the object).
And at some point we'll need to describe the location of even /entirely/
unused arguments so that they can at least be printed on function entry.
llvm-svn: 210231
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
llvm-svn: 210221
Along with a test case to demonstrate that due to inlining order there
are cases where abstract variable DIEs are not constructed since the
abstract subprogram was built due to a previous inlining that optimized
away those variables. This produces incorrect debug info (the 'missing'
abstract variable causes the inlined instance of that variable to be
emitted with a full description (name, line, file) rather than
referencing the abstract origin), but this commit at least ensures that
it doesn't crash...
llvm-svn: 210143
This was previously committed in r209680 and reverted in r209683 after
it caused sanitizer builds to crash.
The issue seems to be that the DebugLoc associated with dbg.value IR
intrinsics isn't necessarily accurate. Instead, we duplicate the
DIVariables and add an InlinedAt field to them to record their
location.
We were using this InlinedAt field to compute the LexicalScope for the
variable, but not using it in the abstract DbgVariable construction and
mapping. This resulted in a formal parameter to the current concrete
function, correctly having no InlinedAt information, but incorrectly
having a DebugLoc that described an inlined location within the
function... thus an abstract DbgVariable was created for the variable,
but its DIE was never constructed (since the LexicalScope had no such
variable). This DbgVariable was silently ignored (by testing for a
non-null DIE on the abstract DbgVariable).
So, fix this by using the right scoping information when constructing
abstract DbgVariables.
In the long run, I suspect we want to undo the work that added this
second kind of location tracking and fix the places where the DebugLoc
propagation on the dbg.value intrinsic fails. This will shrink debug
info (by not duplicating DIVariables), make it more efficient (by not
having to construct new DIVariable metadata nodes to try to map back to
a single variable), and benefit all instructions.
But perhaps there are insurmountable issues with DebugLoc quality that
I'm unaware of... I just don't know how we can't /just keep the DebugLoc
from the dbg.declare to the dbg.values and never get this wrong/.
Some history context:
http://llvm.org/viewvc/llvm-project?view=revision&revision=135629http://llvm.org/viewvc/llvm-project?view=revision&revision=137253
llvm-svn: 209984
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
llvm-svn: 209677
A further step to correctly emitting concrete out of line definitions
preceeding inlined instances of the same program.
To do this, emission of subprograms must be delayed until required since
we don't know which (abstract only (if there's no out of line
definition), concrete only (if there are no inlined instances), or both)
DIEs are required at the start of the module.
To reduce the test churn in the following commit that actually fixes the
bug, this commit introduces the lazy DIE construction and cleans up test
cases that are impacted by the changes in the resulting DIE ordering.
llvm-svn: 209675
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
llvm-svn: 209674
This old test didn't have the argument numbering that's now squirelled
away in the high bits of the line number in the DW_TAG_arg_variable
metadata.
Add the numbering and update the test to ensure arguments are in-order.
llvm-svn: 209669
This was previously regressed/broken by r192749 (reverted due to this
issue in r192938) and I was about to break it again by accident with
some more invasive changes that deal with the subprogram lists. So to
avoid that and further issues - here's a test.
It's a pretty basic test - in both r192749 and my impending case, this
test would crash, but checking the basics (that we put a subprogram in
just one of the two CUs) seems like a good start.
We still get this wrong in weird ways if the linkonce-odr function
happens to not be identical in the metadata (because it's defined in two
different files (hence the # line directives in this test), etc) even
though it meets the language requirements (identical token stream) for
such a thing. That results in two subprogram DIEs, but only one of them
gets the parameter and high/low pc information, etc. We probably need to
use the DIRef infrastructure to deduplicate functions as we do types to
address this issue - or perhaps teach the BC linker to remove the
duplicate entries in subprogram lists?
llvm-svn: 209614
Seems my previous fix was insufficient - we were still not adding the
inlined function to the abstract scope list. Which meant it wasn't
flagged as inline, didn't have nested lexical scopes in the abstract
definition, and didn't have abstract variables - so the inlined variable
didn't reference an abstract variable, instead being described
completely inline.
llvm-svn: 209602
We still do temporary files in many cases, just updating this particular
one because I was debugging it and made this change while doing so.
llvm-svn: 209601
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
llvm-svn: 209580
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
llvm-svn: 209554
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
llvm-svn: 209547
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
llvm-svn: 209338
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
llvm-svn: 209335
make the functions to set them non-static.
Move and rename the llvm specific backend options to avoid conflicting
with the clang option.
Paired with a backend commit to update.
llvm-svn: 209238
In refactoring DwarfUnit::isUnsignedDIType I restricted it to only work
on values with signedness (unsigned or signed), asserting on anything
else (which did uncover some bugs). But it turns out that we do need to
emit constants of signless data, such as pointer constants - only null
pointer constants are known to need this so far, but it's conceivable
that there might be non-null pointer constants at some point (hardcoded
address offsets for device drivers?).
This patch just uses 'unsigned' for signless data such as pointer
constants. Arguably we could use signless representations
(DW_FORM_dataN) instead, allowing a trinary result from isUnsignedDIType
(signed, unsigned, signless), but this seems reasonable for now.
llvm-svn: 209223
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
llvm-svn: 209189
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
llvm-svn: 209178
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
llvm-svn: 209166
The check in DwarfDebug::constructScopeDIE was meant to consider inlined
subroutines as any non-top-level scope that was a subprogram. Instead of
checking "not top level scope" it was checking if the /subprogram's/
scope was non-top-level.
Fix this and beef up a test case to demonstrate some of the missing
inlined_subroutines are no longer missing.
In the course of fixing this I also found that r208748 (with this fix)
found one /extra/ inlined_subroutine in concrete_out_of_line.ll due to
two inlined_subroutines having the same inlinedAt location. The previous
implementation was collapsing these into a single inlined subroutine.
I'm not sure what the original code was that created this .ll file so
I'm not sure if this actually happens in practice today. Since we
deliberately include column information to disambiguate two calls on the
same line, that may've addressed this bug in the frontend, but it's good
to know that workaround isn't necessary for this particular case
anymore.
llvm-svn: 209165
Change --functions option in llvm-symbolizer tool to accept
values "none", "short" or "linkage". Update the tests and docs
accordingly.
llvm-svn: 209050
DIBuilder maintains this invariant and the current DwarfDebug code could
end up doing weird things if it contained declarations (such as putting
the definition DIE inside a CU that contained the declaration - this
doesn't seem like a good idea, so rather than adding logic to handle
this case we'll just ban in for now & cross that bridge if we come to
it later).
llvm-svn: 209004
Since type units in the dwo file are handled by a debug aware tool, they
don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization.
llvm-svn: 208930
Many old tests using prior schemas still had some brokenness here (both
indirect arrays and arrays with single bogus elements). Fixed those up
so they don't hit the new assertions.
Also reduced nesting in some places, etc.
llvm-svn: 208817
This was reverted in r208642 due to regressions surrounding file changes
within lexical scopes causing inlining information to be lost.
The issue was in LexicalScopes::getOrCreateInlinedScope, where I was
previously testing "isLexicalBlock" which is false for
"DILexicalBlockFile" (a scope used to represent changes in the current
file name) and assuming it was then a function (breaking out of the
inlined scope path and reaching for the parent non-inlined scopes). By
inverting the condition and testing for "isSubprogram" the correct
behavior is attained.
(also found some weirdness in Clang, see r208742 when reducing this test
case - the resulting test case doesn't apply with the Clang fix, but
I've added a more realistic test case to inline-scopes.ll which does
reproduce the issue and demonstrate the fix)
llvm-svn: 208748
For some impending improvements to debug info, LLVM will start assuming
that when the CU specifies llvm::DIBuilder::LineTablesOnly, the IR for
functions described by that CU will not include variables, types, etc.
(might be worth having some test coverage for GMLT + non-GMLT CUs,
especially with non-GMLT functions inlined into GMLT CU functions)
llvm-svn: 208634
One test case had to be updated as it still had the extra indirection
for the variable list - removing the extra indirection got it back to
passing.
llvm-svn: 208608
This test was using the inliner and other optimizations to test a case
that's actually a bug anyway. Bug and possible fix/discussion described
here ( http://reviews.llvm.org/D3714 ).
But the functionality that was implemented along with this test is still
desired, so simplify the test to verify a more obvious/less wrong case
that the functionality addressed: looking through const sugar to the
underlying type when emitting a constant (so the constant is emitted as
signed/unsigned as appropriate depending on the signedness of the
underlying type).
llvm-svn: 208504
Doesn't seem a good reason to duplicate this code (it was more literally
duplicated prior to r208494, and while the dataN code /does/ actually
fire in this case, it doesn't seem necessary (and the DWARF standard
recommends using udata/sdata pervasively instead of dataN, so as to
indicate signedness of the values))
llvm-svn: 208495
This the LLVM portion that will allow Clang and other frontends to emit
typedefs of void by providing a null type for the typedef's underlying
type.
llvm-svn: 207777
Breaks GDB buildbot
(http://lab.llvm.org:8011/builders/clang-x86_64-ubuntu-gdb-75/builds/14517)
GCC emits DW_AT_object_pointer /everywhere/ (declaration, abstract
definition, inlined subroutine), but it looks like GCC relies on it
being somewhere other than the declaration, at least. I'll experiment
further & can hopefully still remove it from the inlined_subroutine.
This reverts commit r207705.
llvm-svn: 207719
They just don't need to be there - they're inherited from the abstract
definition. In theory I would like them to be inherited from the
declaration, but the DWARF standard doesn't quite say that... we can
probably do it anyway but I'm less confident about that so I'll leave it
for a separate commit.
llvm-svn: 207717
This effectively reverts r164326, but adds some comments and
justification and ensures we /don't/ emit the DW_AT_object_pointer on
the (abstract and concrete) definitions. (while still preserving it on
standalone definitions involving ObjC Blocks)
This does increase the size of member function declarations from 7 to 11
bytes, unfortunately, but still seems like the Right Thing to do so that
callers that see only the declaration still have the information about
the object pointer. That said, I don't know what, if any, DWARF
consumers don't have a heuristic to guess this in the case of normal
C++ member functions - perhaps we can remove it entirely.
llvm-svn: 207705
While refactoring out constructScopeDIE into two functions I realized we
were emitting DW_AT_object_pointer in the inlined subroutine when we
didn't need to (GCC doesn't, and the abstract subprogram definition has
the information already).
So here's the refactoring and the bug fix. This is one step of
refactoring to remove some subtle memory ownership semantics. It turns
out the original constructScopeDIE returned ownership in its return
value in some cases and not in others. The split into two functions now
separates those two semantics - further cleanup (unique_ptr, etc) will
follow.
llvm-svn: 207441
Since there's no way to ensure the type unit in the .dwo and the type
unit skeleton in the .o are correlated, this cannot work.
This implementation is a bit inefficient for a few reasons, called out
in comments.
llvm-svn: 207323
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207269
Debug info: Let dbg.values inserted by LowerDbgDeclare inherit the location
of the dbg.value. This gets rid of tons of redundant variable DIEs in
subscopes.
rdar://problem/14874886, rdar://problem/16679936
llvm-svn: 207236
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207235
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207165
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207130
This is important for symbolizing executables with debug info in
unavailable .dwo files. Even if all DIE entries are missing, we can
still symbolize an address: function name can be fetched from symbol table,
and file/line info can be fetched from line table.
llvm-svn: 206665
Thanks to dblaikie for updating the testcase!
Debug info: (bugfix) C++ C/Dtors can be compiled to multiple functions,
therefore, their declaration cannot have one DW_AT_linkage_name.
The specific instances however can and should have that attribute.
This patch reorders the code in DwarfUnit::getOrCreateSubprogramDIE()
to emit linkage names for C/Dtors.
rdar://problem/16362674.
llvm-svn: 206210
I found this from a particular GDB test suite case of inlining
(something similar is provided as a test case) but came across a few
other related cases (other callers of the same functions, and one other
instance of the same coding mistake in a separate function).
I'm not sure what the best way to test this is (let alone to cover the
other cases I discovered), so hopefully this sufficies - open to ideas.
llvm-svn: 206130
therefore, their declaration cannot have one DW_AT_linkage_name.
The specific instances however can and should have that attribute.
This patch reorders the code in DwarfUnit::getOrCreateSubprogramDIE()
to emit linkage names for C/Dtors.
rdar://problem/16362674.
llvm-svn: 206096
cygwin has llvm-dwarfdump problems and isn't paying attention to the
specific xfail there.
s390x isn't matching for an unknown reason.
llvm-svn: 205708
I really should read the spec more often (and test GCC more often too).
I just assumed that namespace aliases would be the same as using
directives, except with a name. But apparently that's not how the DWARF
standards suggests they be implemented. DWARF4 provides an example and
other non-normative text suggesting that namespace aliases be
implemented by named imported declarations intsead of named imported
modules.
So be it.
llvm-svn: 205685
Sorry for the breakage.
For now, it will fail in two ways:
1. To fail for targeting x86_64-mingw32.
<stdin>:131:8: note: possible intended match here
0x30830a0100000002 3 0 1 0 0 is_stmt
2. To fail not to find the target x86.
llc: : error: unable to get target for 'x86_64-unknown-unknown',
see --version and --triple.
llvm-svn: 205621
these is very much off and is more than just the branch
from this bug incorrect:
Address Line Column File ISA Discriminator Flags
------------------ ------ ------ ------ --- ------------- -------------
0x30830a0100000002 3 0 1 0 0 is_stmt
0x30830a0100000008 3 0 1 0 0 is_stmt end_sequence
llvm-svn: 205551
llc doesn't generate nodes for unconditional fall-through branches for targets
without FastISel implementation (X86 has it, but can be disabled by
"-fast-isel=false") in SelectionDAGBuilder::visitBr().
So for line 4 in the following testcase
1: void foo(int i){
2: switch(i){
3: default:
4: break;
5: }
6: return;
7: }
there is no corresponding line in .debug_line section, and a debugger
cannot set a breakpoint at line 4.
Fix this by always emitting a branch when we're not optimizing and add a
testcase to ensure that there's code on every line we'd want to break.
Patch by Daniil Fukalov.
llvm-svn: 205529
While we were encoding 64 bit values (data8) in the subrange itself,
using a 32 bit type for the subrange was still confusing the gdb. Oh,
and make it unsigned too.
As the comment points out, this could be pushed into the frontend so
that it would be 32 or 64 bit as appropriate, etc.
llvm-svn: 205512
Seems we didn't have any test coverage for merging... awesome. So I
added some - but hit an llvm-objdump bug while I was there. I'm choosing
not to shave that yak right now.
Code review feedback/bug catch by Adrian Prantl in r205360.
llvm-svn: 205373
This moves one case of raw text checking down into the MCStreamer
interfaces in the form of a virtual function, even if we ultimately end
up consolidating on the one-or-many line tables issue one day, this is
nicer in the interim. This just generally streamlines a bunch of use
cases into a common code path.
llvm-svn: 205287
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
Implement debug_loc.dwo, as well as llvm-dwarfdump support for dumping
this section.
Outlined in the DWARF5 spec and http://gcc.gnu.org/wiki/DebugFission the
debug_loc.dwo section has more variation than the standard debug_loc,
allowing 3 different forms of entry (plus the end of list entry). GCC
seems to, and Clang certainly, only use one form, so I've just
implemented dumping support for that for now.
It wasn't immediately obvious that there was a good refactoring to share
the implementation of dumping support between debug_loc and
debug_loc.dwo, so they're separate for now - ideas welcome or I may come
back to it at some point.
As per a comment in the code, we could choose different forms that may
reduce the number of debug_addr entries we emit, but that will require
further study.
llvm-svn: 204697
This is used to avoid relocations in the dwo file by allowing
DW_AT_ranges specified in debug_info.dwo to be relative to this base
address. (r204667 implements the base-relative DW_AT_ranges side of
this)
llvm-svn: 204672
This removes the debug_ranges relocations from debug_info.dwo (but
doesn't implement the DW_AT_GNU_ranges_base which is also necessary for
correct functioning)
llvm-svn: 204668
Type units have no addresses, so there's no need for DW_AT_addr_base.
This removes another relocation from every skeletal type unit and brings
LLVM's skeletal type units in line with GCC's (containing only
GNU_dwo_name (strp), comp_dir (strp), and GNU_pubnames (flag_present)).
Cary's got some ideas about using str_index in the .o file to reduce
those last two relocations (well, replace two relocations with one
relocation (pointing to the string index) and two indicies)
llvm-svn: 204506
The function exists to force an expression to be absolute, but there it is not
possible to force a symbol reference since
a = b
.long a
means something else.
This is an alternative fix for pr9951 that uses an assert. It then deletes
the old pr9951 test that was testing nothing already.
llvm-svn: 204399
Use the range machinery for DW_AT_ranges and DW_AT_high/lo_pc.
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
with a fix for location entries in the debug_loc section:
Make sure that debug loc entries are relative to the low_pc
of the compile unit. This means that when we only have a single
range that the offset should be just relative to the low_pc
of the unit, for multiple ranges for a CU this means that we'll be
relative to 0 which we emit along with DW_AT_ranges.
This mostly shows up with linked binaries, so add a testcase with
multiple CUs so that our location is going to be offset of a CU
with a non-zero low_pc.
llvm-svn: 204377
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
llvm-svn: 204277
This isn't a complete fix - it falls back to non-comp_dir when multiple
compile units are in play. Adding a map of comp_dir to table is part of
the more general solution, but I gave up (in the short term) when I
realized I'd also have to calculate the size of each type unit so as to
produce correct DW_AT_stmt_list attributes.
llvm-svn: 204202
This removes an attribute (and more importantly, a relocation) from
skeleton type units and removes some unnecessary file names from the
debug_line section that remains in the .o (and linked executable) file.
There's still a few places we could shave off some more space here:
* use compilation dir of the underlying compilation unit (since all the
type units share that compilation dir - though this would be more
complicated in LTO cases where they don't (keep a map of compilation
dir->line table header?))
* Remove some of the unnecessary header fields from the line table since
they're not needed in this situation (about 12 bytes per table).
llvm-svn: 204099
When emitting assembly there's no support for emitting separate line
tables for each compilation unit - so LLVM emits .loc directives
producing a single line table.
Line tables have an implicit directory (index 0) equal to the
compilation directory (DW_AT_comp_dir) of the compilation unit that
references them.
If multiple compilation units (with possibly disparate compilation
directories) reference the same line table, we must avoid relying on
this ambiguous directory.
Achieve this my simply not setting the compilation directory on the line
table when we're in this situation (multiple units while emitting
assembly).
llvm-svn: 204094
Our handling of compilation directory in DwarfDebug was broken
(incorrectly using the 'last' compilation directory (that of the last
CU in the metadata list) for all function emission in any CU). By moving
this handling down into MCDwarf the issue is fixed as the compilation
dir is tracked correctly per line table.
llvm-svn: 204089
any lexical scopes then go ahead and turn on DW_AT_ranges for the
compile unit since we would be claiming to describe in the CU
a range for which we don't have information in the CU otherwise.
llvm-svn: 203969
I could fold the callers into their one call site, but the indirection
(given how verbose choosing the section is) seemed helpful.
The use of a member function pointer's a bit "tricky", but seems limited
enough, the call sites are simple/clean/clear, and there's only one use.
llvm-svn: 203619
This is consistent with GDB ToT and reduces the number of relocations in
(type and compile) units, substantially reducing relocations and debug
size in fission + type units builds.
llvm-svn: 203082
scan the register file for sub- and super-registers.
No functionality change intended.
(Tests are updated because the comments in the assembler output are
different.)
llvm-svn: 202416
any ranges - this includes CU ranges where we were previously emitting an
end list marker even if we didn't have a list.
Testcase includes a test for line table only code emission as the problem
was noticed while writing this test.
llvm-svn: 202357
any ranges to the list of ranges for the CU as we don't want to emit
them anyway. This ensures that we will still emit ranges if we have
a compile unit compiled with only line tables and one compiled with
full debug info requested (we'll emit for the one with full debug info).
Update testcase metadata accordingly to continue emitting ranges.
llvm-svn: 202333
and update everything accordingly. This can be used to conditionalize
the amount of output in the backend based on the amount of debug
requested/metadata emission scheme by a front end (e.g. clang).
Paired with a commit to clang.
llvm-svn: 202332
Variadic functions have an unspecified parameter tag after the last
argument. In IR this is represented as an unspecified parameter in the
subroutine type.
Paired commit with CFE r202185.
rdar://problem/13690847
This re-applies r202184 + a bugfix in DwarfDebug's argument handling.
llvm-svn: 202188
Variadic functions have an unspecified parameter tag after the last
argument. In IR this is represented as an unspecified parameter in the
subroutine type.
Paired commit with CFE.
rdar://problem/13690847
llvm-svn: 202184
passing down an AsmPrinter instance so we could compute the size of
the block which could be target specific. All of the test cases in
the unittest don't have any target specific data so we can use a NULL
AsmPrinter there. This also depends upon block data being added as
integers.
We can now hash the entire fission-cu.ll compile unit so turn the
flag on there with the hash value.
llvm-svn: 201752
alongside DIEBlock and replace uses accordingly. Use DW_FORM_exprloc
in DWARF4 and later code. Update testcases.
Adding a DIELoc instead of using extra forms inside DIEBlock so
that we can keep location expressions separate from other uses. No
direct use at the moment, however, it's not a lot of code and
using a separately named class keeps it somewhat more obvious
what's going on in various locations.
llvm-svn: 201481
This broke in r185459 while TLS support was being generalized to handle
non-symbol TLS representations.
I thought about/tried having an enum rather than a bool to track the
TLS-ness of the address table entry, but namespaces and naming seemed
more hassle than it was worth for only one caller that needed to specify
this.
llvm-svn: 201469
Type units will share the statement list of their defining compile unit.
This is a tradeoff that reduces .o debug info size at the cost of some
linked debug info size (since the contents of those string tables won't
be deduplicated along with the type unit) which seems right for now.
llvm-svn: 201445
Recommitting r201380 (reverted in r201389)
Recommitting r201351 and r201355 (reverted in r201351 and r201355)
We weren't emitting the an empty (header only) line table when the line
table was empty - this made the DWARF invalid (the compile unit would
point to the zero-size debug_lines section where there should've been an
empty line table but there was nothing at all). Fix that, and as a
consequence this works around/addresses PR18809.
Also, we emit a non-empty line table to workaround a darwin linker bug,
so XFAILing on darwin too.
Also, mark the test as 'REQUIRES: object-emission' because it does.
llvm-svn: 201429
Summary:
This adds support for emitting DWARF path discriminator values in
the object streamer. It also changes the DWARF dumper to show
discriminator values in the line table output.
Reviewers: echristo
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2794
llvm-svn: 201427
Recommitting r201351 and r201355 (reverted in r201351 and r201355)
We weren't emitting the an empty (header only) line table when the line
table was empty - this made the DWARF invalid (the compile unit would
point to the zero-size debug_lines section where there should've been an
empty line table but there was nothing at all). Fix that, and as a
consequence this works around/addresses PR18809.
llvm-svn: 201380
There's still one piece missing here, which is adding the
DW_AT_stmt_list to the type unit that refer's to the compile unit's line
table. Working on that.
llvm-svn: 201198
Debug info: Emit values in subregisters that do not have a separate
DWARF register number by emitting a super-register + DW_OP_bit_piece.
This is necessary because on x86_64, there are no DWARF register numbers
for i386-style subregisters.
Fixes a bunch of FIXMEs.
rdar://problem/16015314
llvm-svn: 201190
This comes up in empty files or files containing #file directives that
never reference the actual source file name. Came up in a small test of
line tables I was playing with.
llvm-svn: 201187
DWARF register number by emitting a super-register + DW_OP_bit_piece.
This is necessary because on x86_64, there are no DWARF register numbers
for i386-style subregisters.
Fixes a bunch of FIXMEs.
rdar://problem/16015314
llvm-svn: 201180
A bunch of test cases needed to be cleaned up for this, many my fault -
when implementid imported modules I updated test cases by simply
duplicating the prior metadata field - which wasn't always the empty
metadata entry.
llvm-svn: 200731
This ensures DWARF consumers don't confuse these references for
definitions. I'd argue it might be nice to improve debuggers so we don't
need this, but it's just one field in an abbreviation anyway - so it
doesn't seem worth the fight.
llvm-svn: 200569
module since there's no range guarantee that we could make given
output order. This also fixes up the testcases that have multiple
CUs to have the correct range offset.
llvm-svn: 200422
compile unit. Make these relocations on the platforms that need
relocations and add a routine to ensure that we don't put the
addresses in an offset table for split dwarf.
llvm-svn: 199990
optional DWARF sections, so compiling with -g does not result in
different code being generated for PC-relative loads.
This is reapplying a diet r197922 (__TEXT-only).
llvm-svn: 199681
This reverts commit r198865 which reverts r198851.
ASan identified a use-of-uninitialized of the DwarfTypeUnit::Ty variable
in skeleton type units.
llvm-svn: 198908
This makes it easier to write a test that's mostly shared between
fission and non-fission (using FileCheck's multiple prefix support).
llvm-svn: 198806
This reverts commit r198398, thus reapplying r198397.
I had accidentally introduced an endianness issue when applying the hash
to the type unit. Using support::ulittle64_t in the reinterpret_cast in
addDwarfTypeUnitType fixes this issue.
Original commit message:
Debug Info: Type Units: Simplify type hashing using IR-provided unique
names.
What's good for LTO metadata size problems ought to be good for non-LTO
debug info size too, so let's rely on the same uniqueness in both cases.
If it's insufficient for non-LTO for whatever reason (since we now won't
be uniquing CU-local types or any C types - but these are likely to not
be the most significant contributors to type bloat) we should consider a
frontend solution that'll help both LTO and non-LTO alike, rather than
using DWARF-level DIE-hashing that only helps non-LTO debug info size.
It's also much simpler this way and benefits C++ even more since we can
deduplicate lexically separate definitions of the same C++ type since
they have the same mangled name.
llvm-svn: 198436
What's good for LTO metadata size problems ought to be good for non-LTO
debug info size too, so let's rely on the same uniqueness in both cases.
If it's insufficient for non-LTO for whatever reason (since we now won't
be uniquing CU-local types or any C types - but these are likely to not
be the most significant contributors to type bloat) we should consider a
frontend solution that'll help both LTO and non-LTO alike, rather than
using DWARF-level DIE-hashing that only helps non-LTO debug info size.
It's also much simpler this way and benefits C++ even more since we can
deduplicate lexically separate definitions of the same C++ type since
they have the same mangled name.
llvm-svn: 198397
The cgo problem was that it wants dwarf2 which doesn't support direct
constant encoding of the location. So let's add support for dwarf2
encoding (using a location expression) of data member locations.
This reverts commit r198385.
llvm-svn: 198389
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
with a fix to use integer 0 for DW_AT_low_pc since the relocation to the text section symbol was causing issues with COFF. Accordingly remove addLocalLabelAddress and machinery since we're not currently using it.
llvm-svn: 198222
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
They could be reproducible with explicit target.
llvm/lib/MC/WinCOFFObjectWriter.cpp:224: bool {anonymous}::COFFSymbol::should_keep() const: Assertion `Section->Number != -1 && "Sections with relocations must be real!"' failed.
llvm-svn: 198208
back to the compile unit from the aranges section is to the skeleton
unit and not the one in the dwo.
Do this by adding a method to grab a forwarded on local sym and local
section by querying the skeleton if one exists and using that. Add
a few tests to verify the relocations are back to the correct section.
llvm-svn: 198202
and construct it up front. Add address ranges at the end and a helper
routine so that we're not needlessly using an indirction in the case
of split dwarf.
Update testcases according to the new ordering of attributes on
the compile unit.
llvm-svn: 198196
when you want to have the full list of addresses for a particular CU or
when you have multiple modules linked together and can't depend upon the
ordering of a single CU for begin/end ranges.
llvm-svn: 197776
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
Recommitted as r197197 to reproduce the failure and reverted as r197199
Turns out there was unstable ordering in the type unit dumping code.
Fixed by using MapVector in DWARFContext to store the debug_types
comdat sections.
Recommitted as r197210 with a fix to dumping and reverted as r197211
because I was a bit gun shy and thought I saw a failure that turned out
to be unrelated.
So here we go - once more with feeling! \o/
llvm-svn: 197275
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
Recommitted as r197197 to reproduce the failure and reverted as r197199
Turns out there was unstable ordering in the type unit dumping code.
Fixed by using MapVector in DWARFContext to store the debug_types
comdat sections.
llvm-svn: 197210
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
Originally committed as r197073 and reverted in r197079.
This commit originally got jumbled up with another build-breaking commit
and I can't find the failures I thought this caused anymore.
Recommitting to hopefully get some clean buildbot results to work from.
I have a sneaking suspicion there's unstable output in the comdat group
output of MCStreamer...
llvm-svn: 197197
This reverts commit r197073.
The test seems to be failing on some buildbots for unknown reasons.
Reverting until I can figure that out. If anyone's got a reproduction
(.s and .o together would be great) - I'd really appreciate it.
llvm-svn: 197079
This commit does not complete the type units feature - there are issues
around fission support (skeletal type units, pubtypes/pubnames) and
hashing of some types including those containing references to types in
other type units.
llvm-svn: 197073
This simplifies reasoning about the code and enables simple navigation
from a skeleton to its full unit. (currently there are no type unit
skeletons, so the skeleton list doesn't have the same ID == index
property)
Eventually we should get rid of this ID and just store the labels we
need as the IDs are allowing this code to create difficult to
manage/understand associations (loops over non-skeletal units are
implicitly referencing their skeletal units during pub* emission, for
example). It may be necessary to have some kind of skeleton->full unit
association and a more direct pointer or similar device would be
preferable than an index.
llvm-svn: 196600