Input YAML file might contain multiple object file definitions.
New option `-docnum` allows to specify an ordinal number (starting from 1)
of definition used for an object file generation.
Patch reviewed by Sean Silva.
llvm-svn: 209967
Following the lead set by r209324, I'm making these tests match the whole
instruction, so we can be sure we're lowering them correctly.
llvm-svn: 209947
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
llvm-svn: 209930
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
llvm-svn: 209929
Summary:
Separate the check for blend shuffle_vector masks into isBlendMask.
This function will also be used to check if a vector shuffle is legal. No
change in functionality was intended, but we ended up improving codegen on
two tests, which were being (more) optimized only if the resulting shuffle
was legal.
Reviewers: nadav, delena, andreadb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3964
llvm-svn: 209923
For MIPS, we have to encode the personality routine with
an indirect pointer to absptr; otherwise, some link warning
warning will be raised, and the program might crash in some
early MIPS Android device.
llvm-svn: 209907
Unordered is strictly weaker than monotonic, so if the latter doesn't have any
barriers then the former certainly shouldn't.
rdar://problem/16548260
llvm-svn: 209901
Darwin prologues save their GPRs in two stages: a narrow push of r0-r7 & lr,
followed by a wide push of the remaining registers if there are any. AAPCS uses
a single push.w instruction.
It turns out that, on average, enough registers get pushed that code is smaller
in the AAPCS prologue, which is a nice property for M-class programmers. They
also have other options available for back-traces, so can hopefully deal with
the fact that FP & LR aren't adjacent in memory.
rdar://problem/15909583
llvm-svn: 209895
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
llvm-svn: 209883
This patch adds support to vectorize intrinsics such as powi, cttz and ctlz in Vectorizer. These intrinsics are different from other
intrinsics as second argument to these function must be same in order to vectorize them and it should be represented as a scalar.
Review: http://reviews.llvm.org/D3851#inline-32769 and http://reviews.llvm.org/D3937#inline-32857
llvm-svn: 209873
The corresponding CFE patch replaces these intrinsics with vector initializers
in avxintrin.h. This patch removes the LLVM intrinsics from the backend.
We now stop lowering at X86ISD::VBROADCAST custom node rather than lowering
that further to the intrinsics.
The patch only changes VBROADCASTS* and leaves VBROADCAST[FI]128 to continue
to use intrinsics. As explained in the CFE patch, the reason is that we
currently don't generate as good code for them without the intrinsics.
CodeGen/X86/avx-vbroadcast.ll already provides coverage for this change. It
checks that for a series of insertelements we generate the appropriate
vbroadcast instruction.
Also verified that there was no assembly change in the test-suite before and
after this patch.
llvm-svn: 209864
They are replaced with the same IR that is generated for the
vector-initializers in avxintrin.h.
The test verifies that we get back the original instruction. I haven't seen
this approach to be used in other auto-upgrade tests (i.e. llc + FileCheck)
but I think it's the most direct way to test this case. I believe this should
work because llc upgrades calls during parsing. (Other tests mostly check
that assembling and disassembling yields the upgraded IR.)
llvm-svn: 209863
The loop vectorizer instantiates be-taken-count + 1 as the loop iteration count.
If this expression overflows the generated code was invalid.
In case of overflow the code now jumps to the scalar loop.
Fixes PR17288.
llvm-svn: 209854
These tests ensure that a change I will propose in clang works as
expected.
Summary:
Added tests for the generation of blend+immediate instructions from a
shufflevector.
These tests were proposed along with a patch that was dropped. I'm
committing the tests anyway to protect against possible regressions in
codegen.
Reviewers: nadav, bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3600
llvm-svn: 209853
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209843
This seems to match what gcc does for ppc and what every other llvm
backend does.
This is a fixed version of r209638. The difference is to avoid any change
in behavior for functions. The logic for using constant pools for function
addresseses is spread over a few places and we have to keep them in sync.
llvm-svn: 209821
field represents ELF section header sh_info field and does not have any
sense for regular sections. Its interpretation depends on section type.
llvm-svn: 209801
During loop-unroll, loop exits from the current loop may end up in in different
outer loop. This requires to re-form LCSSA recursively for one level down from
the outer most loop where loop exits are landed during unroll. This fixes PR18861.
Differential Revision: http://reviews.llvm.org/D2976
llvm-svn: 209796
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
llvm-svn: 209788
Don't assume that dynamically initialized globals are all initialized from
_GLOBAL__<module_name>I_ function. Instead, scan the llvm.global_ctors and
insert poison/unpoison calls to each function there.
Patch by Nico Weber!
llvm-svn: 209780
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209755
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
llvm-svn: 209747
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
llvm-svn: 209746
This reverts commit r209638 because it broke self-hosting on ppc64/Linux. (the
Clang-compiled TableGen would segfault because it jumped to an invalid address
from within _ZNK4llvm17ManagedStaticBase21RegisterManagedStaticEPFPvvEPFvS1_E
(which is within the command-line parameter registration process)).
llvm-svn: 209745
Add regression tests for the following transformation:
str X, [x20]
...
add x20, x20, #32
->
str X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
llvm-svn: 209715
Add regression tests for the following transformation:
ldr X, [x20]
...
add x20, x20, #32
->
ldr X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
llvm-svn: 209711