These recently all grew a unique_ptr<TargetLoweringObjectFile> member in
r221878. When anyone calls a virtual method of a class, clang-cl
requires all virtual methods to be semantically valid. This includes the
implicit virtual destructor, which triggers instantiation of the
unique_ptr destructor, which fails because the type being deleted is
incomplete.
This is just part of the ongoing saga of PR20337, which is affecting
Blink as well. Because the MSVC ABI doesn't have key functions, we end
up referencing the vtable and implicit destructor on any virtual call
through a class. We don't actually end up emitting the dtor, so it'd be
good if we could avoid this unneeded type completion work.
llvm-svn: 222480
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
This patch adds builtin support for xvdivdp and xvdivsp, along with a
test case. Straightforward stuff.
There's a companion patch for Clang.
llvm-svn: 221983
Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
llvm-svn: 221791
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td. These are patterned after the similar
intrinsics for lvx and stvx (Altivec). In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.
At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp. This will open up more
optimization opportunities while still allowing the correct
instructions to be generated. (Similar code exists for aligned
Altivec loads and stores.)
The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().
There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number. It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.
I ended up having to modify vsx-fma-m.ll. It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it. The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands. Commutativity allows
either to be chosen. If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result. Hopefully this doesn't change often.
There is a companion patch for Clang.
llvm-svn: 221767
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
llvm-svn: 221751
My original support for the general dynamic and local dynamic TLS
models contained some fairly obtuse hacks to generate calls to
__tls_get_addr when lowering a TargetGlobalAddress. Rather than
generating real calls, special GET_TLS_ADDR nodes were used to wrap
the calls and only reveal them at assembly time. I attempted to
provide correct parameter and return values by chaining CopyToReg and
CopyFromReg nodes onto the GET_TLS_ADDR nodes, but this was also not
fully correct. Problems were seen with two back-to-back stores to TLS
variables, where the call sequences ended up overlapping with unhappy
results. Additionally, since these weren't real calls, the proper
register side effects of a call were not recorded, so clobbered values
were kept live across the calls.
The proper thing to do is to lower these into calls in the first
place. This is relatively straightforward; see the changes to
PPCTargetLowering::LowerGlobalTLSAddress() in PPCISelLowering.cpp.
The changes here are standard call lowering, except that we need to
track the fact that these calls will require a relocation. This is
done by adding a machine operand flag of MO_TLSLD or MO_TLSGD to the
TargetGlobalAddress operand that appears earlier in the sequence.
The calls to LowerCallTo() eventually find their way to
LowerCall_64SVR4() or LowerCall_32SVR4(), which call FinishCall(),
which calls PrepareCall(). In PrepareCall(), we detect the calls to
__tls_get_addr and immediately snag the TargetGlobalTLSAddress with
the annotated relocation information. This becomes an extra operand
on the call following the callee, which is expected for nodes of type
tlscall. We change the call opcode to CALL_TLS for this case. Back
in FinishCall(), we change it again to CALL_NOP_TLS for 64-bit only,
since we require a TOC-restore nop following the call for the 64-bit
ABIs.
During selection, patterns in PPCInstrInfo.td and PPCInstr64Bit.td
convert the CALL_TLS nodes into BL_TLS nodes, and convert the
CALL_NOP_TLS nodes into BL8_NOP_TLS nodes. This replaces the code
removed from PPCAsmPrinter.cpp, as the BL_TLS or BL8_NOP_TLS
nodes can now be emitted normally using their patterns and the
associated printTLSCall print method.
Finally, as a result of these changes, all references to get-tls-addr
in its various guises are no longer used, so they have been removed.
There are existing TLS tests to verify the changes haven't messed
anything up). I've added one new test that verifies that the problem
with the original code has been fixed.
llvm-svn: 221703
This fixes a few cases of:
* Wrong variable name style.
* Lines longer than 80 columns.
* Repeated names in comments.
* clang-format of the above.
This make the next patch a lot easier to read.
llvm-svn: 221615
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
llvm-svn: 221050
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch adds
basic support for VSX intrinsics in general, and tests it by
implementing intrinsics for minimum and maximum for the vector double
data type.
The LLVM portion of this is quite straightforward. There is a
companion patch for Clang.
llvm-svn: 220988
Since block address values can be larger than 2GB in 64-bit code, they
cannot be loaded simply using an @l / @ha pair, but instead must be
loaded from the TOC, just like GlobalAddress, ConstantPool, and
JumpTable values are.
The commit also fixes a bug in PPCLinuxAsmPrinter::doFinalization where
temporary labels could not be used as TOC values, since code would
attempt (and fail) to use GetOrCreateSymbol to create a symbol of the
same name as the temporary label.
llvm-svn: 220959
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570
A previous patch enabled SELECT_VSRC and SELECT_CC_VSRC for VSX to
handle <2 x double> cases. This patch adds SELECT_VSFRC and
SELECT_CC_VSFRC to allow use of all 64 vector-scalar registers for the
f64 type when VSX is enabled. The changes are analogous to those in
the previous patch. I've added a new variant to vsx.ll to test the
code generation.
(I also cleaned up a little formatting in PPCInstrVSX.td from the
previous patch.)
llvm-svn: 220395
The tests test/CodeGen/Generic/select-cc.ll and
test/CodeGen/PowerPC/select-cc.ll both fail with VSX enabled. The
problem is that the lowering logic for the SELECT and SELECT_CC
operations doesn't currently support the VSX registers. This patch
fixes that.
In lib/Target/PowerPC/PPCInstrInfo.td, we have pseudos to handle this
for other register classes. Similar pseudos are added in
PPCInstrVSX.td (they must be there, because the "vsrc" register class
definition appears there) for the VSRC register class. The
SELECT_VSRC pseudo is then used in pattern matching for SELECT_CC.
The rest of the patch just adds logic for SELECT_VSRC wherever similar
logic appears for SELECT_VRRC.
There are no new test cases because the existing tests above test
this, along with a variant in test/CodeGen/PowerPC/vsx.ll.
After discussion with Hal, a future patch will add similar _VSFRC
variants to override f64 type handling (currently using F8RC).
llvm-svn: 220385
With VSX enabled, test/CodeGen/PowerPC/recipest.ll exposes a bug in
the FMA mutation pass. If we have a situation where a killed product
register is the same register as the FMA target, such as:
%vreg5<def,tied1> = XSNMSUBADP %vreg5<tied0>, %vreg11, %vreg5,
%RM<imp-use>; VSFRC:%vreg5 F8RC:%vreg11
then the substitution makes no sense. We end up getting a crash when
we try to extend the interval associated with the killed product
register, as there is already a live range for %vreg5 there. This
patch just disables the mutation under those circumstances.
Since recipest.ll generates different code with VMX enabled, I've
modified that test to use -mattr=-vsx. I've borrowed the code from
that test that exposed the bug and placed it in fma-mutate.ll, where
it tests several mutation opportunities including the "bad" one.
llvm-svn: 220290
With VSX enabled, LLVM crashes when compiling
test/CodeGen/PowerPC/fma.ll. I traced this to the liveness test
that's revised in this patch. The interval test is designed to only
work for virtual registers, but in this case the AddendSrcReg is
physical. Since there is already a walk of the MIs between the
AddendMI and the FMA, I added a check for def/kill of the AddendSrcReg
in that loop. At Hal Finkel's request, I converted the liveness test
to an assert restricted to virtual registers.
I've changed the fma.ll test to have VSX and non-VSX variants so we
can test both kinds of multiply-adds.
llvm-svn: 220090
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
llvm-svn: 220047
On x86_64 this brings it from 80 bytes to 64 bytes. Also make any member
variables private and clean up uses to go through the existing accessors.
NFC.
llvm-svn: 219573
The current VSX feature for PowerPC specifies availability of the VSX
instructions added with the 2.06 architecture version. With 2.07, the
architecture adds new instructions to both the Category:Vector and
Category:VSX instruction sets. Additionally, unaligned vector storage
operations have improved performance.
This patch adds a feature to provide access to the new instructions
and performance capabilities of Power8. For compatibility with GCC,
the feature is controlled via a new -mpower8-vector switch, and the
feature causes the __POWER8_VECTOR__ builtin define to be generated by
the preprocessor.
There is a companion patch for cfe being committed at the same time.
llvm-svn: 219501
The current implementation of GPR->FPR register moves uses a stack slot. This mechanism writes a double word and reads a word. In big-endian the load address must be displaced by 4-bytes in order to get the right value. In little endian this is no longer required. This patch fixes the issue and adds LE regression tests to fast-isel-conversion which currently expose this problem.
llvm-svn: 219441
The VSX instruction definitions for lxsdx, lxvd2x, lxvdsx, and lxvw4x
incorrectly use the XForm_1 instruction format, rather than the
XX1Form instruction format. This is likely a pasto when creating
these instructions, which were based on lvx and so forth. This patch
uses the correct format.
The existing reformatting test (test/MC/PowerPC/vsx.s) missed this
because the two formats differ only in that XX1Form has an extension
to the target register field in bit 31. The tests for these
instructions used a target register of 7, so the default of 0 in bit
31 for XForm_1 didn't expose a problem. For register numbers 32-63
this would be noticeable. I've changed the test to use higher
register numbers to verify my change is effective.
llvm-svn: 219416
These will make it easier to test further changes to the
code generation and optimization pipelines as those are
moved to subtargets initialized with target feature and
target cpu.
llvm-svn: 219106
Summary:
hwsync is only required for seq_cst fences, acquire and release one can use
the cheaper lwsync.
Test Plan: Added some cases to atomics.ll + make check-all
Reviewers: jfb, wschmidt
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5317
llvm-svn: 218995
Older Book-E cores, such as the PPC 440, support only msync (which has the same
encoding as sync 0), but not any of the other sync forms. Newer Book-E cores,
however, do support sync, and for performance reasons we should allow the use
of the more-general form.
This refactors msync use into its own feature group so that it applies by
default only to older Book-E cores (of the relevant cores, we only have
definitions for the PPC440/450 currently).
llvm-svn: 218923
Summary:
Atomic loads and store of up to the native size (32 bits, or 64 for PPC64)
can be lowered to a simple load or store instruction (as the synchronization
is already handled by AtomicExpand, and the atomicity is guaranteed thanks to
the alignment requirements of atomic accesses). This is exactly what this patch
does. Previously, these were implemented by complex
load-linked/store-conditional loops.. an obvious performance problem.
For example, this patch turns
```
define void @store_i8_unordered(i8* %mem) {
store atomic i8 42, i8* %mem unordered, align 1
ret void
}
```
from
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
rlwinm r2, r3, 3, 27, 28
li r4, 42
xori r5, r2, 24
rlwinm r2, r3, 0, 0, 29
li r3, 255
slw r4, r4, r5
slw r3, r3, r5
and r4, r4, r3
LBB4_1: ; =>This Inner Loop Header: Depth=1
lwarx r5, 0, r2
andc r5, r5, r3
or r5, r4, r5
stwcx. r5, 0, r2
bne cr0, LBB4_1
; BB#2:
blr
```
into
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
li r2, 42
stb r2, 0(r3)
blr
```
which looks like a pretty clear win to me.
Test Plan:
fixed the tests + new test for indexed accesses + make check-all
Reviewers: jfb, wschmidt, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5587
llvm-svn: 218922
It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...
llvm-svn: 218698
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
Summary:
This patch makes use of AtomicExpandPass in Power for inserting fences around
atomic as part of an effort to remove fence insertion from SelectionDAGBuilder.
As a big bonus, it lets us use sync 1 (lightweight sync, often used by the mnemonic
lwsync) instead of sync 0 (heavyweight sync) in many cases.
I also added a test, as there was no test for the barriers emitted by the Power
backend for atomic loads and stores.
Test Plan: new test + make check-all
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5180
llvm-svn: 218331
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
llvm-svn: 218219
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
llvm-svn: 218120
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
llvm-svn: 218004
For PPC targets, FastISel does not take the sign extension information into account when selecting return instructions whose operands are constants. A consequence of this is that the return of boolean values is not correct. This patch fixes the problem by evaluating the sign extension information also for constants, forwarding this information to PPCMaterializeInt which takes this information to drive the sign extension during the materialization.
llvm-svn: 217993
Inline asm may specify 'U' and 'X' constraints to print a 'u' for an
update-form memory reference, or an 'x' for an indexed-form memory
reference. However, these are really only useful in GCC internal code
generation. In inline asm the operand of the memory constraint is
typically just a register containing the address, so 'U' and 'X' make
no sense.
This patch quietly accepts 'U' and 'X' in inline asm patterns, but
otherwise does nothing. If we ever unexpectedly see a non-register,
we'll assert and sort it out afterwards.
I've added a new test for these constraints; the test case should be
used for other asm-constraints changes down the road.
llvm-svn: 217622
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528